

ADDITIONAL MONITORING WELL INSTALLATION AND SAMPLING REPORT FORSEYS CLEANERS AND LAUNDRY $856\ 25^{\text{TH}}\ \text{STREET}$ OGDEN, UTAH

PREPARED FOR: OGDEN CITY COMMUNITY & ECONOMIC DEVELOPMENT 2549 WASHINGTON BLVD, SUITE 420 OGDEN, UT 84401

ATTENTION: BRANDON COOPER

AGEC PROJECT NO. 1210017

JANUARY 28, 2021

1.0 INTRODUCTION

This report presents a Monitoring Well Installation and Sampling Report for five additional groundwater monitoring wells installed in the vicinity of the Forsey Cleaners & Laundry facility at 856 East 25th Street in Ogden, Utah. Applied Geotechnical Engineering Consultants, Inc., (AGEC) was requested to install five additional groundwater monitoring wells and conduct sampling to help delineate the extent and degree of PCE/TCE contamination present in the soil and/or groundwater in the vicinity of the former dry cleaner on the property. This report presents a summary of the additional monitoring well installation, soil and groundwater sampling activities and the initial environmental sampling test results for the additional well locations.

1.1 Site Background and Previous Sampling Results

A house was built by 1906 at 856 East 25th Street and was converted into the East Side Nursing Home by the mid 1950s. The house/nursing home was removed by 1961 and replaced with the existing laundry facility at 856 East 25th Street. The building was occupied by Norge Cleaning Village/Meyer's Norge Village from the 1960s to the late 1980s. In the late 1980s, the business name changed to Forsey's Norge self serve laundry and then Forsey's Laundry and Cleaning Village, 4-C's Wash Basin and Four Seasons Laundromat. We understand that dry cleaning has not been performed on site since about 1987.

The property is listed on the RCRA Generator list for Meyers Cleaning Village at 856 25th Street. The facility was a small quantity generator of hazardous waste. The drycleaning facility was closed in early 1987 when the dry cleaning began to be performed at another facility. The business was sold in January 1988. The Forsey laundry does not perform dry cleaning on site.

To help determine if the historical dry cleaner has impacted the property, AGEC conducted a limited subsurface sampling investigation by obtaining soil and groundwater samples and performing a soil vapor investigation with locations inside and outside the existing building. This sampling event was not intended to delineate the extent of the contamination, if present, in the soil vapor, soil or groundwater.

Two exterior borings (GP-1 and GP-2) were advanced near the west and north side of the northwest end of the building, presumably where the historical dry-cleaning equipment was located (Figure 1). Two soil vapor sampling points (PRT-1 and PRT-2) were sampled adjacent to the borings west of the building. Two indoor subslab soil vapor samples were obtained in the northwest room, presumably near the historical dry-cleaning equipment.

The four soil samples did not contain concentrations of the analyzed contaminants above the laboratory reported detection limits with the exception of 2-Butanone also known as methyl ethyl ketone (MEK) and tetrachloroethylene (PCE). The contaminant concentrations were compared to the residential and commercial November 2019 EPA Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. RSLs are not necessarily cleanup standards. The RSL's role in site "screening" is to help identify areas, contaminants, and conditions that may require further attention at a particular site. The detected concentrations of MEK and PCE were below the respective residential RSL values.

The only contaminant detected in the two groundwater samples above the laboratory method detection limits was PCE (Table 2). The concentrations of PCE were 0.0422 mg/L (GP-1) and 0.00661 mg/L (GP-2). The EPA Maximum Contaminant Level (MCL) for PCE is 0.005 mg/L, so both concentrations exceeded the MCL.

The only VOCs detected above the residential VISL in the soil gas were 1,3-butadiene in sample PRT-2, chloroform in VP-2, naphthalene in VP-1, PCE in PRT-1, VP-1 and VP-2 and trichloroethene (TCE) in VP-1 and VP-2.

The concentrations of PCE were significantly higher in the two subslab samples than the exterior PRT samples. The degradation process of PCE produces daughter products as it works toward non-regulated, non-toxic compounds. The primary daughter products of PCE include TCE, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride.

According to the EPA, motor vehicle exhaust is a constant source of 1,3-butadiene and it is usually found in ambient air at low levels in urban and suburban areas. Potential sources of chloroform include chlorine-treated drinking water. Chlorinated drinking water can leak from buried water supply or sanitary sewer lines. A floor drain was within several feet of VP-2 and is likely the source of the chloroform. Naphthalene is found in cigarette smoke, car exhaust and diesel fuel.

Based on the limited initial sampling performed at the site, it appeared the PCE contamination is a result of a historical release near the former dry-cleaning equipment.

The sources of 1,3-butadiene, chloroform and naphthalene in the soil vapor samples are unknown. As they each were only detected in one of four samples, these compounds did not appear to be widespread contaminants on the property.

Findings of the study were reported to Ogden City Business Development under AGEC Project No. 1200034, dated January 29, 2020.

To help determine the soil and groundwater conditions on site, AGEC installed five groundwater monitoring wells on site (MW-1 to MW-5), in the vicinity of the previously detected groundwater contamination in borings GP-1 and GP-2 with wells east of the building (up gradient) and northwest, west and southwest of GP-1 (Figure 1). The five initial groundwater monitoring wells (MW-1 to MW-5) were installed on December 22, 2020.

Soil Results

PCE was detected in the soil samples from MW-2, MW-3, MW-4 and MW-5 above the laboratory method detection limits. The analytical test results (Table 1 in Appendix A) indicate that the concentrations of PCE were below the November 2020 EPA Residential or Industrial Screening Levels (SLs). No other compounds were detected above the laboratory detection limits in boring MW-1, MW-2, MW-3 or MW-4. No compounds of concern were detected in boring MW-1 above the laboratory method detection limits.

Groundwater Results

PCE was detected above the laboratory method detection limits in the groundwater samples from MW-2, MW-3 and MW-4. The analytical test results (Table 2 in Appendix A) indicate that the groundwater samples from MW-2, MW-3 and MW-4 contain concentrations of PCE above the November 2020 EPA Maximum Contaminant Level (MCL). The only other compound detected above the laboratory method detection limits was TCE (0.00626 mg/L) in boring MW-3 which is above the TCE MCL of 0.005 mg/L.

Based on the soil gas, soil and groundwater samples obtained in the vicinity of the Forsey Cleaners & Laundry facility, a historical release of dry-cleaning solvent occurred. Concentrations of PCE and TCE are present in the groundwater above the MCL in at least one monitoring well. VOCs detected above the residential VISL in the soil gas were 1,3-butadiene in sample PRT-2, chloroform in VP-2, naphthalene in VP-1, PCE in PRT-1, VP-1 and VP-2 and TCE in VP-1 and VP-2. Soil contamination above the EPA SLs has not been encountered during the previous two sampling events.

As the PCE groundwater contamination was highest in MW-3, the extent of the groundwater plume was not delineated with this sampling investigation.

Findings of the study were reported to Ogden City Business Development under AGEC Project No. 1200908, dated January 28, 2021.

2.0 ADDITIONAL SITE INVESTIGATION SAMPLING ACTIVITIES

To help delineate the PCE/TCE plume at the site, five additional monitoring wells were installed down gradient (north and west) of MW-3.

2.1 Additional Monitoring Well Installation and Soil Sampling

AGEC installed four additional groundwater monitoring wells on site (MW-6 to MW-9), and one additional groundwater monitoring well off site (MW-10), down gradient of the highest concentrations of PCE/TCE previously detected in the groundwater in MW-3 (Figure 1). The five additional groundwater monitoring wells (MW-6 to MW-10) were installed on January 20, 2021.

Each well location was pre-marked and Blue-staked. The five additional wells were installed using hollow 3.25-inch inside diameter direct-push casing by drilling approximately 15 feet below the ground using a dual-tube sampling rod. The soil was logged and continuously sampled to the bottom of the borings in 5-foot intervals using disposable acetate liners. Groundwater was encountered in the borings at depths of approximately 7 to $8\frac{1}{2}$ feet. Drilling and sampling equipment were decontaminated prior to arrival and between each boring with the use of a non-phosphate detergent (Alconox) and double rinsing in tap water with a pressure washer.

The soil samples obtained from the borings were screened on site with a photo-ionization detection (PID) meter. The PID was calibrated with a known concentration of isobutylene gas and zeroed at a background site location. Soil staining, odors and elevated PID readings were not detected during the sampling. As no evidence of contamination was detected in the borings, soil samples were obtained from each boring near the groundwater interface depth (6½ to 8½ feet below grade). A soil sample was also obtained from MW-6 at a depth of approximately 11 feet. Each soil sample was placed in two glass jars as provided by the analytical laboratory with no head space while wearing new disposable gloves. The sample jars were labeled with the location, depth, date and time, immediately stored in a cooler with ice and transported with chain of custody forms to a Utah-certified analytical laboratory, American West Analytical Laboratories (AWAL). The soil samples were analyzed for total VOCs.

The subsurface sampling indicated the materials encountered in borings MW-6 to MW-10 consist of approximately ½-foot of asphaltic concrete pavement overlying approximately ½-foot of base course. Approximately 1 to 4 feet of fill extends below the base course in borings MW-6 to MW-9. The fill consists of sandy lean clay and silty sand with gravel. The fill contains varying amounts of brick and concrete debris.

Approximately $6\frac{1}{2}$ to $9\frac{1}{2}$ feet of natural lean clay grading to sandy lean clay extends below the fill in borings MW-6 to MW-9 and below the base course in boring MW-10. Natural lean clay interlayered with silty to poorly-graded sand with silt extends below the natural lean clay to the maximum depth investigated, approximately 15 feet. Boring logs are presented on Figure 4 with notes and legend on Figure 5.

The wells were constructed with 10 feet of 1.5-inch inside diameter, schedule 40 PVC well screen with prepacked sand (2.25 inch OD). The inert screen for the wells extended approximately 2 to 5 feet above the groundwater interface to allow for sample collection in the uppermost aquifer. Blank schedule 40 PVC riser pipe extended from the screen to within approximately 6 inches of the top of the surrounding ground surface. A solid end cap was placed on the bottom of each of the well screen sections. Each well was constructed with approximately 1 to 2 feet of silica sand extending above the screen section and then hydrated bentonite to within 1 foot of the ground surface. Each well was completed with a 7-inch diameter flush-mounted monument embedded in concrete.

As the borings were advanced with direct push methods, excess drill cuttings were not produced.

2.2 Well Sampling

Development of the wells was performed on January 22, 2021, approximately 2 days after the wells were installed. The new wells were developed with the use of a peristaltic pump and by pumping a minimum of three well casing volumes. Free-product was not observed in the wells or purge water. The purge water removed during the well development was collected in buckets and deposited in a steel 55-gallon drum with sealing lid that was placed on the north side of the existing Forsey building. The drum and purge water will be stored on site temporarily until laboratory test results indicate the proper method of disposal.

The tops of each of the five additional new well casings on the property were surveyed after installation so that the groundwater elevations and gradient can be calculated (Table 4 in Appendix A). The depth to groundwater and the overall depth of the wells was measured in each monitoring well to determine the groundwater elevation in each well and the water column volume. The depth to water in the five additional new wells was measured on January 22, 2021, prior to purging and sampling. The wells were measured with a water level indicator probe to the nearest 0.01 foot. The probe was decontaminated between each monitoring well with non-phosphate soap (Alconox) and double rinsed in tap water. The groundwater elevations from the five wells were used to calculate the approximate hydraulic

gradient with the EPA Hydraulic Gradient Calculator (0.015 ft/ft) and groundwater flow direction across the property (approximately 277°) to the west-northwest (Figure 3).

Following the well development activities, groundwater samples were obtained on January 22, 2021, in general accordance with the sampling protocols as set by Utah State and the Environmental Protection Agency. The samples from each of the five wells were collected with the use of a peristaltic pump with low flow controls and new polyethylene tubing to fill the sample vials. A duplicate set of groundwater samples was obtained from monitoring well MW-6 (MW-6 Dup).

The samples were transferred directly to 40 ml glass vials equipped with Teflon septa and preserved with 2 percent hydrochloric acid as provided by the analytical laboratory. The sample vials were labeled, immediately stored in a cooler with ice to maintain an appropriate temperature of approximately 4°C and transported with chain of custody forms to AWAL. Chain of Custody forms supplied by the analytical laboratory were used. A set of trip blank samples prepared by the laboratory was stored with the five samples and duplicate and was submitted with the other samples for analytical testing for total VOCs.

2.3 Equipment Decontamination Procedures

Disposable well development and sampling equipment such as new polyethylene tubing and disposable gloves were used to help eliminate the possibility of cross-contamination and to simplify decontamination procedures.

3.0 LABORATORY RESULTS

During the January 20 and 22, 2021 sampling events, the six soil samples, five groundwater samples, one duplicate groundwater sample and the trip blank were submitted to AWAL for laboratory analyses to determine if significant concentrations of VOCs were present in the soil and/or groundwater on the property at the sampled locations. Quality control level 2+ was used by the analytical laboratory.

3.1 Soil Results

PCE was detected in the soil samples from MW-7 and MW-10 above the laboratory method detection limits. The analytical test results (Table 1 in Appendix A) indicate that the concentrations of PCE were below the November 2020 EPA Residential or Industrial Screening Levels (SLs). No other compounds were detected above the

laboratory detection limits in borings MW-7 or MW-10. No compounds of concern were detected in borings MW-6, MW-8 or MW-9 above the laboratory method detection limits.

3.2 Groundwater Results

PCE was detected above the laboratory method detection limits in the groundwater samples from MW-6, MW-7, MW-8 and MW-10 (Figure 2). The analytical test results (Table 2 in Appendix A) indicate that the groundwater samples from MW-6, MW-7, MW-8 and MW-10 contain concentrations of PCE above the November 2020 EPA Maximum Contaminant Level (MCL). The only other compound detected above the laboratory method detection limits was TCE (0.0127 mg/L) in boring MW-10, which is above the TCE MCL of 0.005 mg/L and chloroform (0.00410 mg/L) in MW-7. The concentration of chloroform is below the MCL of 0.080 mg/L.

3.3 Quality Control/Assurance Data Validation Report

The data validation conducted on the laboratory analytical data for the six soil and five groundwater samples is considered acceptable for use in meeting the project objectives. The samples were submitted to the analytical laboratory the same day they were sampled on January 20 and 22, 2021.

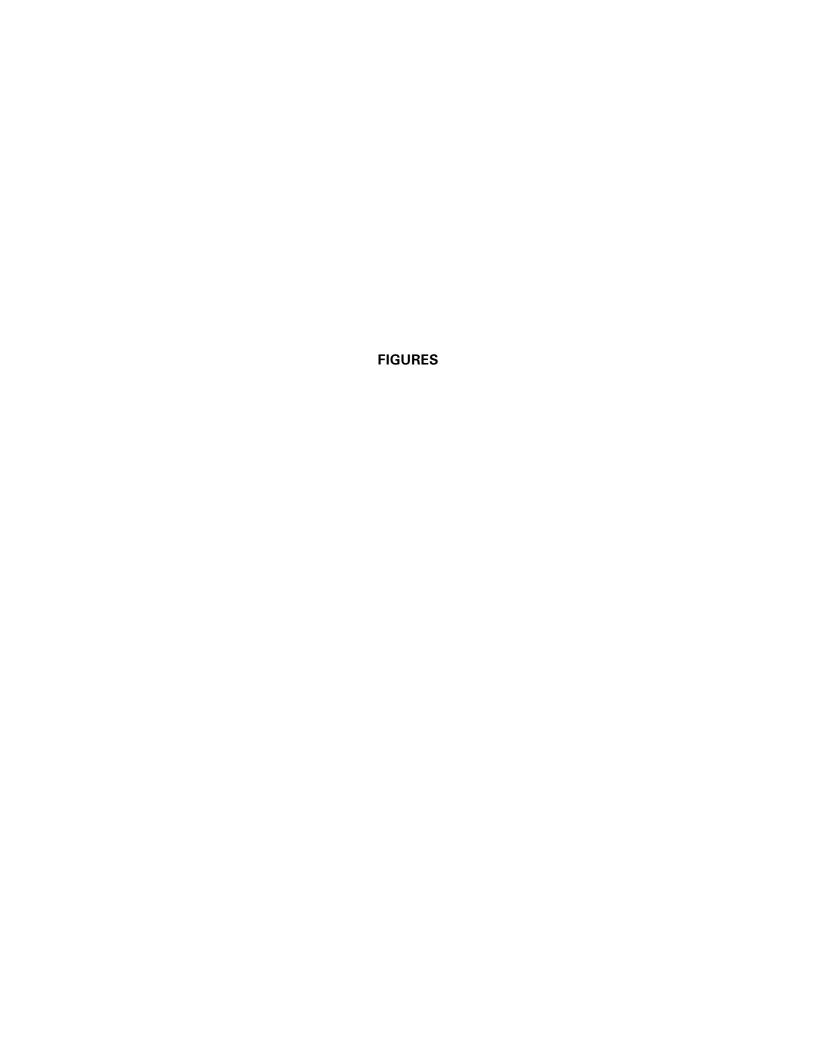
Chain of custody forms were filled out for the soil and groundwater samples. Copies of the AWAL test reports and QC summary reports are included in Appendix B of this report.

4.0 CONCLUSIONS

Based on the soil gas, soil and groundwater samples obtained in the vicinity of the Forsey Cleaners & Laundry facility, a historical release of dry-cleaning solvent occurred. Concentrations of PCE and TCE are present in the groundwater above the MCL in six of the ten monitoring wells installed at the site. VOCs detected above the residential VISL in the soil gas were 1,3-butadiene in sample PRT-2, chloroform in VP-2, naphthalene in VP-1, PCE in PRT-1, VP-1 and VP-2 and TCE in VP-1 and VP-2. Soil contamination above the EPA SLs has not been encountered during the previous two sampling events.

As the PCE groundwater contamination is above the MCL in MW-7, MW-8 and MW-10 the extent of the PCE groundwater plume has not been delineated with this sampling investigation, and has been shown to impact the neighboring property to the west.

5.0 LIMITATIONS


This study has been prepared in accordance with generally accepted environmental practices in this area for the use of the client. The conclusions of the report are based on information obtained from field observations and testing of the soil and groundwater samples obtained at the approximate locations indicated in the report and the data obtained from the field and laboratory testing.

Applied Geotechnical Engineering Consultants, Inc. does not represent that the soil and groundwater on the property contains no hazardous materials or other latent conditions beyond what was found for the compounds and locations tested.

APPLIED GEOTECHNICAL ENGINEERING CONSULTANTS, INC.

Joseph R. De Deray Prepared by Joseph R. DeGooyer

Reviewed by Thomas R. Atkinson

From NearMap Aerial Photograph September 11, 2020

Approximate Scale 1 inch = 40 feet

FORSEY CLEANERS & LAUNDRY 856 25TH STREET OGDEN, UTAH

From NearMap Aerial Photograph September 11, 2020

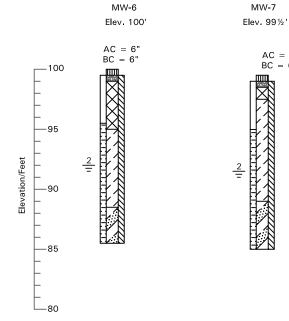
= PCE (mg/L)

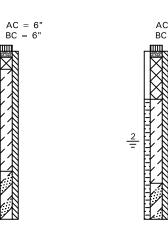
Approximate Scale 1 inch = 40 feet FORSEY CLEANERS & LAUNDRY 856 25TH STREET OGDEN, UTAH

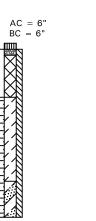


From NearMap Aerial Photograph September 11, 2020

= GW Elevation RSB

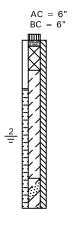


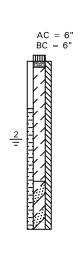

Approximate Scale 1 inch = 40 feet FORSEY CLEANERS & LAUNDRY 856 25TH STREET OGDEN, UTAH



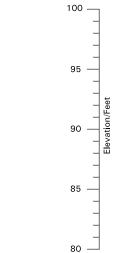
Approximate Vertical Scale 1" = 8'

See Figure 6 for Legend and Notes




MW-8

Elev. 99½'


MW-9

Elev. 100'

MW-10

Elev. 97'

Approximate Vertical Scale 1" = 8'

AGEC

See Figure 6 for Legend and Notes

Asphaltic Concrete, dense, dry, black, poor to good condition. Base Course; silty gravel with sand, moist, brown, angular aggregates. Fill; lean clay to sandy lean clay to silty gravel with sand, moist, dark brown to brown to dark gray, petroleum hydrocarbon odor in MW-1 and MW-2. Lean Clay (CL); sandy, stiff to medium stiff, moist, dark brown to brown, slight petroleum hydrocarbon odor in MW-2. Silty Sand (SM); loose to medium dense, moist, light brown. Poorly-graded Sand (SP); slightly gravelly, medium dense, wet, brown. Poorly-graded Sand with Silty Sand (SP/SM); medium dense, moist, brown to gray. Poorly-graded Gravel with Sand (GP); loose to very dense, moist to wet, brown to gray, petroleum hydrocarbon odor in MW-2. Poorly-graded Gravel with Silt and Sand (GP-GM); medium dense, moist to wet, grayish brown. 10/12 California Drive sample taken. The symbol 10/12 indicates that 10 blows from a 140-pound automatic hammer falling 30 inches were required to drive the sampler 12 inches. Indicates continuous soil sample taken. The samples were obtained with disposable acetate liners. Indicates slotted 1½-inch PVC pipe installed in the boring to the depth shown. Indicates solid 1½-inch PVC pipe installed in the boring to the depth shown.

Indicates the depth to free water and number of days after drilling the measurement

LEGEND:

was taken.

AGEC

1210017

NOTES:

- Borings MW-1 TO MW-5 were drilled on December 3, 2020 using direct push equipment. Borings MW-6 to MW-10 were drilled on January 20, 2021.
- 2. Locations of the borings were measured approximately by pacing from features shown on the site plan provided.
- Elevations of the borings were measured by automatic/hand level and refer to the benchmark shown on Figure 1.
- The boring locations and elevations should be considered accurate only to the degree implied by the method used.
- 5. The lines between materials shown on the boring logs represent the approximate boundaries between material types and the transitions may be gradual.
- 6. The water level readings shown on the logs were made at the time and under the conditions indicated, Fluctuations in the water level will occur with time,

Exploratory Boring Legend and Notes Figure 6

APPENDIX A ANALYTICAL RESULT TABLES

Soil and Groundwater Analytical Results Forsey's Laundry

Table 1 - Soil Results

Sample	Depth	Date	PID	MEK*	PCE**
	(feet)		(ppm)	(mg/kg)	(mg/kg)
GP-1	0 to 2	1/20/2020	0.4	0.0306	0.0104
GP-1	7	1/20/2020	5.4	0.031	0.0108
GP-2	0 to 2	1/20/2020	0	0.0275	0.0135
GP-2	7	1/20/2020	1.1	0.0324	ND
MW-1	6½ to 8½	12/22/2020	0	ND	ND
MW-2	6½ to 8½	12/22/2020	0.1	ND	0.00279
MW-3	6½ to 8½	12/22/2020	0.1	ND	0.018
MW-4	6½ to 8½	12/22/2020	0.2	ND	0.00385
MW-5	6½ to 8½	12/22/2020	0.1	ND	0.00336
MW-6	6 to 7	1/20/2021	0.4	ND	ND
MW-6	10 to 11	1/20/2021	0.5	ND	ND
MW-7	6½ to 8½	1/20/2021	0.6	ND	22.1
MW-8	6½ to 8½	1/20/2021	0.3	ND	ND
MW-9	6½ to 8½	1/20/2021	0.3	ND	ND
MW-10	6½ to 8½	1/20/2021	0.2	ND	13.8
November 2	2020 EPA Resid	27,000	24		
November 2	2020 EPA Indus	190,000	100		

Table 2 - Groundwater Results

Sample	Depth	Date	PCE**	TCE***
	(feet)		(mg/L)	(mg/L)
GP-1	7	1/20/2020	0.0422	ND
GP-2	7	1/20/2020	0.00661	ND
MW-1	7.5	12/28/2020	ND	ND
MW-1-Dup	7.5	12/28/2020	ND	ND
MW-2	8.2	12/28/2020	0.0584	ND
MW-3	8.2	12/28/2020	0.739	0.00624
MW-4	8.1	12/28/2020	0.00585	ND
MW-5	7.8	12/28/2020	ND	ND
Trip Blank	NA	12/28/2020	ND	ND
MW-6	8.3	1/20/2021	0.0224	ND
MW-6-Dup	8.3	1/20/2021	0.0213	ND
MW-7	8.2	1/20/2021	0.204	ND
MW-8	8.4	1/20/2021	0.0372	ND
MW-9	8.7	1/20/2021	ND	ND
MW-10	6.4	1/20/2021	0.226	0.0127
Trip Blank	NA	1/20/2021	ND	ND
November 202	0 EPA MCL	0.005	0.005	

^{*} MEK identified as 2-Butadone in lab results

ND = Non Detect

** PCE identified as tetrachloroethene in lab results

NA = Not Applicable

*** TCE identified as trichloroethene

Table 3 - Soil Gas Analytical Results Forsey's Laundry

	CAS	Toxicity	PRT-1	PRT-2	VP-1	VP-2	Residential Target Sub-Slab and Near-source Soil Gas Concentration (TCR = 1E-06 or THQ = 0.1) C_{sg} , Target	Commercial Target Sub-Slab and Near-source Soil Gas Concentration (TCR = 1E-06 or THQ = 0.1) C_{sg} , Target
Chemical	Number	Basis	(µg/m³)	(µg/m³)	(<i>µ</i> g/m ³)	(<i>µ</i> g/m ³)	(μg/m³)	(µg/m³)
Acetone	67-64-1	NC	122	31.1	81.7	96.7	107,000	451,000
Benzene	71-43-2	CA	3.05	7.19	1.09	1.59	12	52.4
Butadiene, 1,3-	106-99-0	CA	ND	26.8	ND	ND	3.12	13.6
Carbon Disulfide	75-15-0	NC	ND	7.66	ND	ND	2,430	10,200
Carbon Tetrachloride	56-23-5	CA	2.03	ND	ND	ND	15.6	68.1
Chloroform	67-66-3	CA	ND	ND	ND	17	4.07	17.8
Chloromethane	74-87-3	NC	1.31	0.498	0.764	ND	313	1,310
Cyclohexane	110-82-7	NC	ND	ND	ND	0.813	20,900	87,600
Dichloroethene, 1,1-	75-35-4	NC	ND	ND	2.37	ND	695	2,920
Dichloroethene, cis 1,2-	156-59-2		ND	ND	19.6	9.67	NA	NA
Dioxane, 1,4-	123-91-1	CA	ND	ND	ND	6.56	18.7	81.8
Ethanol	64-17-5		50.5	7.52	30.4	27.5	NA	NA
Ethylbenzene	100-41-4	CA	1.08	1.21	1.68	ND	37.4	164
Ethyltoluene, 4-	622-96-8		ND	ND	2.91	ND	NA	NA
Trichlorofluoromethane	75-69-4		1.25	ND	2.24	1.31	NA	NA
Dichlorodifluoromethane	75-71-8	NC	ND	1.94	2.94	2.32	NA	NA
Heptane	142-82-5	NC	1.43	1.43	0.83	2.42	1,390	5,840
Hexane, N-	110-54-3	NC	2.92	4.05	1.23	6.49	2,430	10,200
Isopropylbenzene	98-82-8		ND	ND	2.18	ND	1,390	5,840
Methylene Chloride	75-09-2	CA	2.57	0.847	ND	1.24	2,090	8,760
2-Butanone (MEK)	78-93-3	NC	7.93	11.2	12.3	5.07	17,400	73,000
Naphthalene	91-20-3	CA	ND	ND	5.97	ND	2.75	12
2-Propanol (Isopropanol)	67-63-0	NC	5.92	ND	7.67	15	695	2,920
Propene (Propylene)	115-07-1	NC	ND	164	3.99	ND	10,400	43,800
Styrene	100-42-5	NC	ND	1.66	ND	ND	3,480	14,600
Tetrachloroethylene	127-18-4	CA	25.4	468	37,100	74,000	139	584
Toluene	108-88-3	NC	7.84	6.93	3.06	2.5	17,400	73,000
Trichloroethylene	79-01-6	NC	ND	ND	399	427	6.95	29.2
Trimethylbenzene, 1,2,4-	95-63-6	NC	2.05	1.03	4.49	ND	209	876
Trimethylpentane, 2,2,4-	540-84-1		5.05	ND	ND	ND	NA	NA
Xylene, M & P-	1330-20-7	NC	4.94	2.63	4.22	ND	348	1,460
Xylene, o-	95-47-6	NC	1.78	1.09	1.22	ND	348	1,460

NA = Not Available - No EPA Target ND = Non Detect

Table 4 - Monitoring Well Construction Data Forsey Cleaners

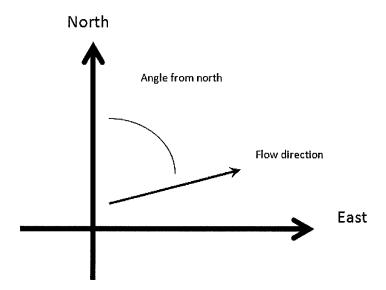
Monitor Well ID	Drilling Method	Total Depth	Date Installed	Diameter/Well Material	Top of Casing Elevation	Screened Interval	Sand Pack	Depth to Water BTOC	GW Elevation RSB
		(BTOC)			(RSB)	(ft)	(ft)	(ft)	(ft)
MW-1	Direct Push	15 feet	12/22/2020	1 ½- inch/PVC	99.61	5 to 15	3 to 15	7.46	92.15
MW-2	Direct Push	15 feet	12/22/2020	1 ½- inch/PVC	99.74	5 to 15	3 to 15	8.17	91.57
MW-3	Direct Push	15 feet	12/22/2020	1 ½- inch/PVC	99.42	5 to 15	3 to 15	8.24	91.18
MW-4	Direct Push	15 feet	12/22/2020	1 ½- inch/PVC	99.25	5 to 15	3 to 15	8.07	91.18
MW-5	Direct Push	15 feet	12/22/2020	1 ½- inch/PVC	99.14	5 to 15	3 to 15	7.80	91.34
MW-6	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	99.44	5 to 15	3 to 15	8.33	91.11
MW-7	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	98.96	5 to 15	3 to 15	8.17	90.79
MW-8	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	99.18	5 to 15	3 to 15	8.44	90.74
MW-9	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	99.78	5 to 15	3 to 15	8.70	91.08
MW-10	Direct Push	15 feet	1/20/2021	1 ½- inch/PVC	96.52	5 to 15	3 to 15	6.36	90.16

BTOC = Below Top of Casing RSB = Relative to Site Benchmark

EPA On-line Tools for Site Assessment Calculation

Hydraulic Gradient -- Magnitude and Direction

Gradient Calculation from fitting a plane to as many as thirty points


$$a x_1 + b y_1 + c = h_1$$

 $a x_2 + b y_2 + c = h_2$
 $a x_3 + b y_3 + c = h_3$
...
 $a x_{30} + b y_{30} + c = h_{30}$

where $(x_{l^{\prime}}y_{l})$ are the coordinates of the well and h_{i} is the head

i = 1,2,3, ..., 30

The coefficients a, b, and c are calculated by a least-squares fitting of the the data to a plane

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant

Inputs						
Example Data Set	1 Example Da	ta Set 2 C	alculate Clear			
Save Data	Recall Data	Go Back				
Site Name	Forsey Clea	ners				
Date 1/22/2021 Current Date						
Calculation basis	Head					
Coordinates ft ~						
I.D.	x-coordinate	y-coordinate	head ft v			
1) MW-1	162	87	92,15			
2) MW-2	121	101	91,57			
3) MW-3	97	100	91.18			
4) MW-4	91	76	91.18			
5) MW-5	96	60	91.34			
6) MW-6	96	120	91.11			
7) MW-7	65	95	90.79			
8) MW-8	68	119	90.74			
9) MW-9	82	150	91.08			
10) MW-10	38	139	90.16			
11)						
12)						
13)						
14)]				
15)	L					
16)		1				
17)						

18)	
19)	
20)	
21)	
22)	
23)	
24)	
25)	
26)	The second secon
27)	
28)	
29)	
30)	

Results

Number of Points Used in Calculation | 10

Max. Difference Between Head Values | 0.6066

Gradlent Magnitude (i) | 0.01492

Flow direction as degrees from North (positive y axis)276.6

Coefficient of Determination (R²) | 0.977

WCMS

Last updated on 2/23/2016

APPENDIX B AWAL LABORATORY RESULTS

Joe DeGooyer Applied Geotechnical 600 West Sandy Parkway Sandy, UT 84070

TEL: (801) 566-6399

RE: Forsey's Cleaners Additional MW's / 1210017

3440 South 700 West Salt Lake City, UT 84119 Dear Joe DeGooyer: Lab Set ID: 2101481

American West Analytical Laboratories received sample(s) on 1/20/2021 for the analyses presented in the following report.

American West Analytical Laboratories (AWAL) is accredited by The National

Phone: (801) 263-8686
Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is

state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

Kyle F. Gross Laboratory Director

Jose Rocha

QA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,	
Approved by:	
	Laboratory Director or designee

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners Additional MW's / 1210017

Lab Sample ID: 2101481-001A **Client Sample ID:** MW-6 @ 7'

Collection Date: 1/20/2021 1100h **Received Date:** 1/20/2021 1722h

Analytical Results VOAs AWAL List by GC/MS Method 8260D

Analyzed: 1/22/2021 855h Extracted:

Units: μg/kg-dry Dilution Factor: 0.99 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.48	< 2.48	
1,1,2,2-Tetrachloroethane	79-34-5	2.48	< 2.48	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.48	< 2.48	#
1,1,2-Trichloroethane	79-00-5	2.48	< 2.48	
1,1-Dichloroethane	75-34-3	2.48	< 2.48	1
1,1-Dichloroethene	75-35-4	2.48	< 2.48	
1,2,3-Trichlorobenzene	87-61-6	2.48	< 2.48	
1,2,4-Trichlorobenzene	120-82-1	2.48	< 2.48	
1,2-Dibromo-3-chloropropane	96-12-8	6.20	< 6.20	
1,2-Dibromoethane	106-93-4	2.48	< 2.48	
1,2-Dichlorobenzene	95-50-1	2.48	< 2.48	
1,2-Dichloroethane	107-06-2	2.48	< 2.48	1
1,2-Dichloropropane	78-87-5	2.48	< 2.48	
1,3-Dichlorobenzene	541-73-1	2.48	< 2.48	
1,4-Dichlorobenzene	106-46-7	2.48	< 2.48	
1,4-Dioxane	123-91-1	62.0	< 62.0	
2-Butanone	78-93-3	12.4	< 12.4	\$
2-Hexanone	591-78-6	6.20	< 6.20	
4-Methyl-2-pentanone	108-10-1	6.20	< 6.20	
Acetone	67-64-1	12.4	< 12.4	
Benzene	71-43-2	2.48	< 2.48	1
Bromochloromethane	74-97-5	2.48	< 2.48	
Bromodichloromethane	75-27-4	2.48	< 2.48	1
Bromoform	75-25-2	2.48	< 2.48	
Bromomethane	74-83-9	6.20	< 6.20	
Carbon disulfide	75-15-0	2.48	< 2.48	
Carbon tetrachloride	56-23-5	2.48	< 2.48	
Chlorobenzene	108-90-7	2.48	< 2.48	
Chloroethane	75-00-3	2.48	< 2.48	

Report Date: 1/26/2021 Page 2 of 29

Test Code: 8260D-S

Lab Sample ID: 2101481-001A Client Sample ID: MW-6 @ 7'

Analyzed: 1/22/2021 855h **Extracted:**

Units: µg/kg-dry **Dilution Factor:** 0.99 Method: SW8260D

	Units. μg/	kg-ury	Dilution Fact	0.99		Methou.	3 W 6200D	
American West	Compound					eporting Limit	Analytical Result	Qual
	Chloroform			67	-66-3	2.48	< 2.48	1
	Chlorometha	nne		74	-87-3	3.72	< 3.72	
	cis-1,2-Dich	loroethene		150	6-59-2	2.48	< 2.48	
	cis-1,3-Dich	s-1,3-Dichloropropene			61-01-5	2.48	< 2.48	
3440 South 700 West	Cyclohexane	:		110	0-82-7	2.48	< 2.48	
Salt Lake City, UT 84119	Dibromochlo	oromethane		124	4-48-1	2.48	< 2.48	
	Dichlorodifl	uoromethane		75	-71-8	2.48	< 2.48	#
	Ethylbenzen	e		100	0-41-4	2.48	< 2.48	#
Phone: (801) 263-8686	Isopropylber	nzene		98	-82-8	2.48	< 2.48	#
Toll Free: (888) 263-8686	m,p-Xylene			1796	01-23-1	2.48	< 2.48	#
Fax: (801) 263-8687	Methyl Acet	ate		79	-20-9	6.20	< 6.20	
e-mail: awal@awal-labs.com	Methyl tert-l	outyl ether		163	4-04-4	2.48	< 2.48	
	Methylcyclo	hexane		108	8-87-2	2.48	< 2.48	#
web: www.awal-labs.com	Methylene c	hloride		75	-09-2	6.20	< 6.20	
	Naphthalene			91	-20-3	2.48	< 2.48	
	o-Xylene			95	-47-6	2.48	< 2.48	
Kyle F. Gross	Styrene			100	0-42-5	2.48	< 2.48	
Laboratory Director	Tetrachloroe	thene		127	7-18-4	2.48	< 2.48	#
	Toluene			108	8-88-3	2.48	< 2.48	
Jose Rocha	trans-1,2-Die	chloroethene		150	6-60-5	2.48	< 2.48	
QA Officer	trans-1,3-Die	chloropropene		1000	61-02-6	2.48	< 2.48	
	Trichloroeth	ene		79	-01-6	2.48	< 2.48	
	Trichloroflu	oromethane		75	-69-4	2.48	< 2.48	#
	Vinyl chlorid	de		75	-01-4	1.24	< 1.24	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	l % REC	Limits	Qual
	,	hloroethane-d4	17060-07-0	63.2	62.00	102	70-132	
		ofluorobenzene	460-00-4	63.9	62.00	103	70-125	
	Surr: Dibrom	ofluoromethane	1868-53-7 2037-26-5	61.3 63.6	62.00 62.00	98.9 103	70-133 70-123	
	Sum rolucile	J-UU	2037-20-3	0.50	02.00	103	10-143	

Surr: Toluene-d8 2037-26-5 63.6 62.00 103 70-123

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Sampling and analytical preparation performed by method 5030A modified for analysis of soil samples collected in 2 or 4 oz jars.

^{#-} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical **Contact:** Joe DeGooyer

Forsey's Cleaners Additional MW's / 1210017 **Project:**

Lab Sample ID: 2101481-002A Client Sample ID: MW-6 @ 11' **Collection Date:** 1/20/2021 1110h **Received Date:** 1/20/2021 1722h

Bromochloromethane

Bromoform

Bromomethane

Carbon disulfide

Chlorobenzene

Chloroethane

Carbon tetrachloride

Bromodichloromethane

VOAs AWAL List by GC/MS Method 8260D **Analytical Results**

Analyzed: 1/22/2021 1301h **Extracted:**

Dilution Factor: 0.98 Method: SW8260D Units: µg/kg-dry

3440 South 700 West Salt Lake City, UT 84119

CAS Reporting **Analytical** Compound Number Limit Result Qual 1,1,1-Trichloroethane 71-55-6 2.45 < 2.451,1,2,2-Tetrachloroethane 79-34-5 2.45 < 2.45Phone: (801) 263-8686 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 2.45 < 2.45# Toll Free: (888) 263-8686 1,1,2-Trichloroethane 79-00-5 2.45 < 2.45Fax: (801) 263-8687 1.1-Dichloroethane 75-34-3 2.45 < 2.45e-mail: awal@awal-labs.com 1,1-Dichloroethene 75-35-4 2.45 < 2.45 1,2,3-Trichlorobenzene 87-61-6 2.45 < 2.45web: www.awal-labs.com 1,2,4-Trichlorobenzene 120-82-1 2.45 < 2.451,2-Dibromo-3-chloropropane 96-12-8 6.12 < 6.12 1,2-Dibromoethane 106-93-4 2.45 < 2.45 Kyle F. Gross 1,2-Dichlorobenzene 95-50-1 2.45 < 2.45 **Laboratory Director** 1,2-Dichloroethane 107-06-2 2.45 < 2.45 78-87-5 1,2-Dichloropropane 2.45 < 2.45 Jose Rocha 1,3-Dichlorobenzene 541-73-1 2.45 < 2.45 **QA** Officer 1,4-Dichlorobenzene 106-46-7 2.45 < 2.45 61.2 1,4-Dioxane 123-91-1 < 61.2 2-Butanone 78-93-3 12.2 < 12.2 \$ 2-Hexanone 591-78-6 6.12 < 6.12 4-Methyl-2-pentanone 108-10-1 6.12 < 6.12 Acetone 67-64-1 12.2 < 12.2 Benzene 71-43-2 2.45 < 2.45

Report Date: 1/26/2021 Page 4 of 29

< 2.45

< 2.45

< 2.45

< 6.12

< 2.45

< 2.45

< 2.45

< 2.45

Test Code: 8260D-S

74-97-5

75-27-4

75-25-2

74-83-9

75-15-0

56-23-5

108-90-7

75-00-3

2.45

2.45

2.45

6.12

2.45

2.45

2.45

2.45

Lab Sample ID: 2101481-002A Client Sample ID: MW-6 @ 11'

Analyzed: 1/22/2021 1301h **Extracted:**

Units: µg/kg-dry **Dilution Factor: 0.98** Method: SW8260D

American West	Compound				porting Limit	Analytical Result	Qual
	Chloroform		67	-66-3	2.45	< 2.45	
	Chloromethane		74	-87-3	3.67	< 3.67	
	cis-1,2-Dichloroethene		156	5-59-2	2.45	< 2.45	
	cis-1,3-Dichloropropene	1006	51-01-5	2.45	< 2.45		
3440 South 700 West	Cyclohexane		110)-82-7	2.45	< 2.45	
Salt Lake City, UT 84119	Dibromochloromethane		124	1-48-1	2.45	< 2.45	
	Dichlorodifluoromethane		75	-71-8	2.45	< 2.45	#
	Ethylbenzene		100)-41-4	2.45	< 2.45	#
Phone: (801) 263-8686	Isopropylbenzene		98	-82-8	2.45	< 2.45	#
Toll Free: (888) 263-8686	m,p-Xylene		1796	01-23-1	2.45	< 2.45	#
Fax: (801) 263-8687	Methyl Acetate		79	-20-9	6.12	< 6.12	
e-mail: awal@awal-labs.com	Methyl tert-butyl ether		163	4-04-4	2.45	< 2.45	
	Methylcyclohexane		108-87-2		2.45	< 2.45	#
web: www.awal-labs.com	Methylene chloride		75	-09-2	6.12	< 6.12	
	Naphthalene		91	-20-3	2.45	< 2.45	
	o-Xylene		95	-47-6	2.45	< 2.45	
Kyle F. Gross	Styrene		100)-42-5	2.45	< 2.45	
Laboratory Director	Tetrachloroethene		127	7-18-4	2.45	< 2.45	#
	Toluene		108	3-88-3	2.45	< 2.45	
Jose Rocha	trans-1,2-Dichloroethene		156	5-60-5	2.45	< 2.45	
QA Officer	trans-1,3-Dichloropropene		1006	61-02-6	2.45	< 2.45	
	Trichloroethene		79	-01-6	2.45	< 2.45	
	Trichlorofluoromethane		75	-69-4	2.45	< 2.45	#
	Vinyl chloride		75	-01-4	1.22	< 1.22	
	Surrogate Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dichloroethane-d4	17060-07-0	63.1	61.22	103	70-132	
	Surr: 4-Bromofluorobenzene	460-00-4	61.5	61.22	101	70-125	
	Surr: Dibromofluoromethane Surr: Toluene-d8	1868-53-7 2037-26-5	59.2 61.0	61.22 61.22	96.7 99.7	70-133 70-123	

Sampling and analytical preparation performed by method 5030A modified for analysis of soil samples collected in 2 or 4 oz jars.

- This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical **Contact:** Joe DeGooyer

Forsey's Cleaners Additional MW's / 1210017 **Project:**

Lab Sample ID: 2101481-003A Client Sample ID: MW-7 @ 7.5' **Collection Date:** 1/20/2021 1157h **Received Date:** 1/20/2021 1722h

Analytical Results

Carbon disulfide

Chlorobenzene

Chloroethane

Carbon tetrachloride

Test Code: 8260D-S VOAs AWAL List by GC/MS Method 8260D

Analyzed: 1/22/2021 1402h **Extracted:**

Dilution Factor: 0.99 Method: SW8260D Units: µg/kg-dry

3440 South 700 West Salt Lake City, UT 84119

CAS Reporting **Analytical** Compound Number Limit Result Qual 1,1,1-Trichloroethane 71-55-6 2.41 < 2.41 1,1,2,2-Tetrachloroethane 79-34-5 2.41 < 2.41 Phone: (801) 263-8686 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 2.41 < 2.41 # Toll Free: (888) 263-8686 1,1,2-Trichloroethane 79-00-5 2.41 < 2.41 Fax: (801) 263-8687 1.1-Dichloroethane 75-34-3 2.41 < 2.41 e-mail: awal@awal-labs.com 1,1-Dichloroethene 75-35-4 2.41 < 2.41 1,2,3-Trichlorobenzene 87-61-6 2.41 < 2.41web: www.awal-labs.com 1,2,4-Trichlorobenzene 120-82-1 2.41 < 2.41 1,2-Dibromo-3-chloropropane 96-12-8 6.02 < 6.02 1,2-Dibromoethane 106-93-4 2.41 < 2.41 Kyle F. Gross 1,2-Dichlorobenzene 95-50-1 2.41 < 2.41 **Laboratory Director** 1,2-Dichloroethane 107-06-2 2.41 < 2.41 78-87-5 1,2-Dichloropropane 2.41 < 2.41 Jose Rocha 1,3-Dichlorobenzene 541-73-1 2.41 < 2.41 **QA** Officer 1,4-Dichlorobenzene 106-46-7 2.41 < 2.41 60.2 1,4-Dioxane 123-91-1 < 60.2 2-Butanone 78-93-3 12.0 < 12.0 \$ 2-Hexanone 591-78-6 6.02 < 6.02 4-Methyl-2-pentanone 108-10-1 6.02 < 6.02 Acetone 67-64-1 12.0 < 12.0 Benzene 71-43-2 2.41 < 2.41 Bromochloromethane 74-97-5 2.41 < 2.41 Bromodichloromethane 75-27-4 2.41 < 2.41Bromoform 75-25-2 2.41 < 2.4174-83-9 Bromomethane 6.02 < 6.02

Report Date: 1/26/2021 Page 6 of 29

< 2.41

< 2.41

< 2.41

< 2.41

75-15-0

56-23-5

108-90-7

75-00-3

2.41

2.41

2.41

2.41

Lab Sample ID: 2101481-003A Client Sample ID: MW-7 @ 7.5'

Analyzed: 1/22/2021 1402h **Extracted:**

Units: µg/kg-dry **Dilution Factor:** 0.99 Method: SW8260D

merican West	Compound					oorting Limit	Analytical Result	Qual
	Chloroform			67	-66-3	2.41	< 2.41	
	Chlorometha	nne		74	-87-3	3.61	< 3.61	
	cis-1,2-Dich	loroethene		150	5-59-2	2.41	< 2.41	
	cis-1,3-Dich	loropropene		1006	51-01-5	2.41	< 2.41	
3440 South 700 West	Cyclohexane			110)-82-7	2.41	< 2.41	
Lake City, UT 84119	Dibromochlo	oromethane		124	1-48-1	2.41	< 2.41	
	Dichlorodifl	uoromethane		75	-71-8	2.41	< 2.41	#
	Ethylbenzen	e		100)-41-4	2.41	< 2.41	#
hone: (801) 263-8686	Isopropylber	nzene		98	-82-8	2.41	< 2.41	#
Free: (888) 263-8686	m,p-Xylene			1796	01-23-1	2.41	< 2.41	#
Fax: (801) 263-8687	Methyl Acet	ate		79	-20-9	6.02	< 6.02	
l: awal@awal-labs.com	Methyl tert-l	outyl ether		163	4-04-4	2.41	< 2.41	
	Methylcyclo	hexane		108	3-87-2	2.41	< 2.41	#
www.awal-labs.com	Methylene c	hloride		75	-09-2	6.02	< 6.02	
	Naphthalene			91	-20-3	2.41	< 2.41	
	o-Xylene			95	-47-6	2.41	< 2.41	
Kyle F. Gross	Styrene			100)-42-5	2.41	< 2.41	
Laboratory Director	Tetrachloroe	ethene		127	7-18-4	2.41	22.1	*
. D. 1	Toluene			108	3-88-3	2.41	< 2.41	
Jose Rocha	trans-1,2-Die	chloroethene		150	5-60-5	2.41	< 2.41	
QA Officer	trans-1,3-Die	chloropropene		1006	51-02-6	2.41	< 2.41	
	Trichloroeth	ene		79	-01-6	2.41	< 2.41	
	Trichloroflu	oromethane		75	-69-4	2.41	< 2.41	#
	Vinyl chlorid	de		75	-01-4	1.20	< 1.20	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dic	hloroethane-d4	17060-07-0	62.1	60.16	103	70-132	
		nofluorobenzene	460-00-4	59.6	60.16	99.1	70-125	
	Surr: Dibrom	ofluoromethane	1868-53-7	58.1	60.16	96.5	70-133	

Sampling and analytical preparation performed by method 5030A modified for analysis of soil samples collected in 2 or 4 oz jars.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

^{* -} This compound exceeded (high) the control limit for the CCV. The compound concentration is estimated and may be biased high.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners Additional MW's / 1210017

 Lab Sample ID:
 2101481-004A

 Client Sample ID:
 MW-8 @ 7.5'

 Collection Date:
 1/20/2021
 1238h

 Received Date:
 1/20/2021
 1722h

Analytical Results VOAs AWAL List by GC/MS Method 8260D

Analyzed: 1/22/2021 1422h Extracted:

Units: µg/kg-dry Dilution Factor: 0.99 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.43	< 2.43	
1,1,2,2-Tetrachloroethane	79-34-5	2.43	< 2.43	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.43	< 2.43	#
1,1,2-Trichloroethane	79-00-5	2.43	< 2.43	
1,1-Dichloroethane	75-34-3	2.43	< 2.43	
1,1-Dichloroethene	75-35-4	2.43	< 2.43	
1,2,3-Trichlorobenzene	87-61-6	2.43	< 2.43	
1,2,4-Trichlorobenzene	120-82-1	2.43	< 2.43	
1,2-Dibromo-3-chloropropane	96-12-8	6.08	< 6.08	
1,2-Dibromoethane	106-93-4	2.43	< 2.43	
1,2-Dichlorobenzene	95-50-1	2.43	< 2.43	
1,2-Dichloroethane	107-06-2	2.43	< 2.43	
1,2-Dichloropropane	78-87-5	2.43	< 2.43	
1,3-Dichlorobenzene	541-73-1	2.43	< 2.43	
1,4-Dichlorobenzene	106-46-7	2.43	< 2.43	
1,4-Dioxane	123-91-1	60.8	< 60.8	
2-Butanone	78-93-3	12.2	< 12.2	\$
2-Hexanone	591-78-6	6.08	< 6.08	
4-Methyl-2-pentanone	108-10-1	6.08	< 6.08	
Acetone	67-64-1	12.2	< 12.2	
Benzene	71-43-2	2.43	< 2.43	
Bromochloromethane	74-97-5	2.43	< 2.43	
Bromodichloromethane	75-27-4	2.43	< 2.43	
Bromoform	75-25-2	2.43	< 2.43	
Bromomethane	74-83-9	6.08	< 6.08	
Carbon disulfide	75-15-0	2.43	< 2.43	
Carbon tetrachloride	56-23-5	2.43	< 2.43	
Chlorobenzene	108-90-7	2.43	< 2.43	
Chloroethane	75-00-3	2.43	< 2.43	

Report Date: 1/26/2021 Page 8 of 29

Test Code: 8260D-S

Lab Sample ID: 2101481-004A **Client Sample ID:** MW-8 @ 7.5'

Analyzed: 1/22/2021 1422h Extracted:

Units: μg/kg-dry Dilution Factor: 0.99 Method: SW8260D

Compound		emits. µg/	ag ary	Dilution 1 act	0.55		Witting.	5 11 0200D				
Chloromethane 74-87-3 3.65 < 3.65	American West	Compound						•	Qual			
cis-1,2-Dichloroethene cis-1,3-Dichloropopene cis-1,3-Dichloropopene cis-1,3-Dichloropopene cis-1,3-Dichloropopene cis-1,3-Dichloropopene cis-1,3-Dichloromethane cis-1,3-Dichloropopene cis-1,3-Dichloropopene cis-1,3-Dichloromethane cis-1,3-Dich		Chloroform			67	'-66-3	2.43	< 2.43				
Salt Lake City, UT 84119		Chlorometha	ine		74	-87-3	3.65	< 3.65				
3440 South 700 West Cyclohexane 110-82-7 2.43 < 2.43 < 2.43 Salt Lake City, UT 84119 Dibromochloromethane 124-48-1 2.43 < 2.43		cis-1,2-Dich	loroethene		150	6-59-2	2.43	< 2.43				
Salt Lake City, UT 84119 Dibromochloromethane 124-48-1 2.43 < 2.43 # Dichlorodifluoromethane 75-71-8 2.43 < 2.43 # Ethylbenzene 100-41-4 2.43 < 2.43 # Phone: (801) 263-8686 Isopropylbenzene 98-82-8 2.43 < 2.43 # Phone: (801) 263-8686 Isopropylbenzene 98-82-8 2.43 < 2.43 # Phone: (801) 263-8687 Imp-Xylene 179601-23-1 2.43 < 2.43 # Phone: (801) 263-8687 Imp-Xylene 179601-23-1 2.43 < 2.43 # Phone: (801) 263-8687 Imp-Xylene 1634-04-4 2.43 < 2.43 # Methyl Acetate 79-20-9 6.08 < 6.08 Methyl Lert-butyl ether 1634-04-4 2.43 < 2.43 # Web: www.awal-labs.com Methylene chloride 75-09-2 6.08 < 6.08 Naphthalene 91-20-3 2.43 < 2.43 O-Xylene 95-47-6 2.43 < 2.43 Tetrachloroethene 127-18-4 2.43 < 2.43 Tetrachloroethene 127-18-4 2.43 < 2.43 Toluene 108-88-3 2.43 < 2.43 Toluene 108-88-3 2.43 < 2.43 Trichloroethene 79-01-6 2.43 < 2.43 Trichloroethene 79-01-6 2.43 < 2.43 Trichloroethene 75-69-4		cis-1,3-Dich	loropropene		1006	61-01-5	2.43	< 2.43				
Dichlorodifluoromethane 75-71-8 2.43 < 2.43 #	3440 South 700 West	Cyclohexane	;		110	0-82-7	2.43	< 2.43				
Phone: (801) 263-8686 Isopropylberzer 98-82-8 2.43 < 2.43 #	Salt Lake City, UT 84119	Dibromochlo	oromethane		124	4-48-1	2.43	< 2.43				
Phone: (801) 263-8686 Isopropylbenzene 98-82-8 2.43 <2.43 # Toll Free: (888) 263-8686 m.p-Xylene 179601-23-1 2.43 <2.43		Dichlorodifle	uoromethane		75	5-71-8	2.43	< 2.43	#			
Toll Free: (888) 263-8686		Ethylbenzen	e		100	0-41-4	2.43	< 2.43	#			
Fax: (801) 263-8687 e-mail: awal@awal-labs.com web: www.awal-labs.com	Phone: (801) 263-8686	Isopropylber	nzene		98	3-82-8	2.43	< 2.43	#			
Fax: (801) 263-8687 Methyl Acetate 79-20-9 6.08 < 6.08	Toll Free: (888) 263-8686	m,p-Xylene			1796	501-23-1	2.43	< 2.43	#			
e-mail: awal@awal-labs.com Methyl tert-butyl ether 1634-04-4 2.43 < 2.43 web: www.awal-labs.com Methylcyclohexane 108-87-2 2.43 < 2.43 # web: www.awal-labs.com Methylene chloride 75-09-2 6.08 < 6.08 # Naphthalene 91-20-3 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43 < 2.43<	, ,	Methyl Acet	ate		79	-20-9	6.08	< 6.08				
web: www.awal-labs.com Methylene chloride 75-09-2 6.08 < 6.08 Naphthalene 91-20-3 2.43 < 2.43	, ,	Methyl tert-b	outyl ether		163	4-04-4	2.43	< 2.43				
Naphthalene o-Xylene 91-20-3 2.43 < 2.43		Methylcyclo	hexane		108	8-87-2	2.43	< 2.43	#			
Name	web: www.awal-labs.com	Methylene cl	hloride		75	5-09-2	6.08	< 6.08				
Styrene 100-42-5 2.43 < 2.43		Naphthalene			91	-20-3	2.43	< 2.43				
Laboratory Director Tetrachloroethene Toluene Toluene 108-88-3 108-88-3 2.43 4.43		o-Xylene			95	-47-6	2.43	< 2.43				
Toluene 108-88-3 2.43 < 2.43	Kyle F. Gross	Styrene			100	0-42-5	2.43	< 2.43				
Trans-1,2-Dichloroethene 156-60-5 2.43 < 2.43	Laboratory Director	Tetrachloroe	thene		127	7-18-4	2.43	< 2.43	#			
trans-1,2-Dichloroethene 156-60-5 2.43 < 2.43 trans-1,3-Dichloropropene 10061-02-6 2.43 < 2.43 Trichloroethene 79-01-6 2.43 < 2.43 Trichlorofluoromethane 75-69-4 2.43 < 2.43 # Vinyl chloride 75-01-4 1.22 < 1.22 Surrogate Units: μg/kg-dry CAS Result Amount Spiked REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 64.1 60.81 105 70-132 Surr: 4-Bromofluorobenzene 460-00-4 60.7 60.81 99.9 70-125 Surr: Dibromofluoromethane 1868-53-7 58.7 60.81 96.5 70-133		Toluene			108	8-88-3	2.43	< 2.43				
Trichloroethene 79-01-6 2.43 < 2.43 Trichlorofluoromethane 75-69-4 2.43 < 2.43 # Vinyl chloride 75-01-4 1.22 < 1.22 Surrogate Units: μg/kg-dry CAS Result Amount Spiked REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 64.1 60.81 105 70-132 Surr: 4-Bromofluorobenzene 460-00-4 60.7 60.81 99.9 70-125 Surr: Dibromofluoromethane 1868-53-7 58.7 60.81 96.5 70-133		trans-1,2-Dio	chloroethene		150	6-60-5	2.43	< 2.43				
Trichlorofluoromethane 75-69-4 2.43 < 2.43 # Vinyl chloride 75-01-4 1.22 < 1.22 Surrogate Units: μg/kg-dry CAS Result Amount Spiked % REC Limits Qual	QA Officer	trans-1,3-Dio	chloropropene		1000	61-02-6	2.43	< 2.43				
Vinyl chloride 75-01-4 1.22 < 1.22 Surrogate Units: μg/kg-dry CAS Result Amount Spiked % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 64.1 60.81 105 70-132 Surr: 4-Bromofluorobenzene 460-00-4 60.7 60.81 99.9 70-125 Surr: Dibromofluoromethane 1868-53-7 58.7 60.81 96.5 70-133		Trichloroeth	ene		79	0-01-6	2.43	< 2.43				
Surrogate Units: μg/kg-dry CAS Result Amount Spiked % REC Limits Qual Surr: 1,2-Dichloroethane-d4 17060-07-0 64.1 60.81 105 70-132 Surr: 4-Bromofluorobenzene 460-00-4 60.7 60.81 99.9 70-125 Surr: Dibromofluoromethane 1868-53-7 58.7 60.81 96.5 70-133					75	5-69-4	2.43 < 2.		#			
Surr: 1,2-Dichloroethane-d4 17060-07-0 64.1 60.81 105 70-132 Surr: 4-Bromofluorobenzene 460-00-4 60.7 60.81 99.9 70-125 Surr: Dibromofluoromethane 1868-53-7 58.7 60.81 96.5 70-133					75	5-01-4	1.22 < 1.22	< 1.22				
Surr: 4-Bromofluorobenzene 460-00-4 60.7 60.81 99.9 70-125 Surr: Dibromofluoromethane 1868-53-7 58.7 60.81 96.5 70-133		Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual			
Surr: Dibromofluoromethane 1868-53-7 58.7 60.81 96.5 70-133		Surr: 1,2-Dic	hloroethane-d4	17060-07-0	64.1	60.81	105	70-132				

 $Sampling\ and\ analytical\ preparation\ performed\ by\ method\ 5030A\ modified\ for\ analysis\ of\ soil\ samples\ collected\ in\ 2\ or\ 4\ oz\ jars.$

#- This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners Additional MW's / 1210017

 Lab Sample ID:
 2101481-005A

 Client Sample ID:
 MW-9 @ 8.5'

 Collection Date:
 1/20/2021
 1336h

 Received Date:
 1/20/2021
 1722h

Analytical Results VOAs AWAL List by GC/MS Method 8260D

Analyzed: 1/22/2021 1443h Extracted:

Units: μg/kg-dry Dilution Factor: 0.98 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.37	< 2.37	
1,1,2,2-Tetrachloroethane	79-34-5	2.37	< 2.37	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.37	< 2.37	#
1,1,2-Trichloroethane	79-00-5	2.37	< 2.37	
1,1-Dichloroethane	75-34-3	2.37	< 2.37	
1,1-Dichloroethene	75-35-4	2.37	< 2.37	
1,2,3-Trichlorobenzene	87-61-6	2.37	< 2.37	
1,2,4-Trichlorobenzene	120-82-1	2.37	< 2.37	
1,2-Dibromo-3-chloropropane	96-12-8	5.93	< 5.93	
1,2-Dibromoethane	106-93-4	2.37	< 2.37	
1,2-Dichlorobenzene	95-50-1	2.37	< 2.37	
1,2-Dichloroethane	107-06-2	2.37	< 2.37	
1,2-Dichloropropane	78-87-5	2.37	< 2.37	
1,3-Dichlorobenzene	541-73-1	2.37	< 2.37	
1,4-Dichlorobenzene	106-46-7	2.37	< 2.37	
1,4-Dioxane	123-91-1	59.3	< 59.3	
2-Butanone	78-93-3	11.9	< 11.9	\$
2-Hexanone	591-78-6	5.93	< 5.93	
4-Methyl-2-pentanone	108-10-1	5.93	< 5.93	
Acetone	67-64-1	11.9	< 11.9	
Benzene	71-43-2	2.37	< 2.37	
Bromochloromethane	74-97-5	2.37	< 2.37	
Bromodichloromethane	75-27-4	2.37	< 2.37	
Bromoform	75-25-2	2.37	< 2.37	
Bromomethane	74-83-9	5.93	< 5.93	
Carbon disulfide	75-15-0	2.37	< 2.37	
Carbon tetrachloride	56-23-5	2.37	< 2.37	
Chlorobenzene	108-90-7	2.37	< 2.37	
Chloroethane	75-00-3	2.37	< 2.37	

Test Code: 8260D-S

Lab Sample ID: 2101481-005A Client Sample ID: MW-9 @ 8.5'

Analyzed: 1/22/2021 1443h **Extracted:**

Units: µg/kg-dry **Dilution Factor: 0.98** Method: SW8260D

CAS Number Compound CAS Number CAS Reporting CAS CAS	
Chloromethane 74-87-3 3.56 < 3.56	:
	:
cis-1,2-Dichloroethene 156-59-2 2.37 < 2.37	
,	
cis-1,3-Dichloropropene 10061-01-5 2.37 < 2.37	1
3440 South 700 West Cyclohexane 110-82-7 2.37 < 2.37	ŧ
Salt Lake City, UT 84119 Dibromochloromethane 124-48-1 2.37 < 2.37	1
Dichlorodifluoromethane 75-71-8 2.37 < 2.37	
Ethylbenzene 100-41-4 2.37 < 2.37	Ł
Phone: (801) 263-8686	Ł
Toll Free: (888) 263-8686 m,p-Xylene 179601-23-1 2.37 < 2.37	Ė
Fax: (801) 263-8687 Methyl Acetate 79-20-9 5.93 < 5.93	
e-mail: awal@awal-labs.com Methyl tert-butyl ether 1634-04-4 2.37 < 2.37	
Methylcyclohexane 108-87-2 2.37 < 2.37	į.
web: www.awal-labs.com Methylene chloride 75-09-2 5.93 < 5.93	
Naphthalene 91-20-3 2.37 < 2.37	
o-Xylene 95-47-6 2.37 < 2.37	
Kyle F. Gross Styrene 100-42-5 2.37 < 2.37	
Laboratory Director Tetrachloroethene 127-18-4 2.37 < 2.37	<u> </u>
Toluene 108-88-3 2.37 < 2.37	
Jose Rocha trans-1,2-Dichloroethene 156-60-5 2.37 < 2.37	
QA Officer trans-1,3-Dichloropropene 10061-02-6 2.37 < 2.37	
Trichloroethene 79-01-6 2.37 < 2.37	
Trichlorofluoromethane 75-69-4 2.37 < 2.37	<u>!</u>
Vinyl chloride 75-01-4 1.19 < 1.19	
Surrogate Units: µg/kg-dry CAS Result Amount Spiked % REC Limits Q	ıal
Surr: 1,2-Dichloroethane-d4 17060-07-0 64.1 59.26 108 70-132	
Surr: 4-Bromofluorobenzene 460-00-4 61.3 59.26 104 70-125 Surr: Dibromofluoromethane 1868-53-7 60.3 59.26 102 70-133	
Surr: Toluene-d8 2037-26-5 61.5 59.26 104 70-123	

Sampling and analytical preparation performed by method 5030A modified for analysis of soil samples collected in 2 or 4 oz jars.

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forsey's Cleaners Additional MW's / 1210017

 Lab Sample ID:
 2101481-006A

 Client Sample ID:
 MW-10 @ 6.5'

 Collection Date:
 1/20/2021 1430h

 Received Date:
 1/20/2021 1722h

Analytical Results VOAs AWAL List by GC/MS Method 8260D

Analyzed: 1/25/2021 1539h **Extracted:**

Units: μg/kg-dry Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.46	< 2.46	
1,1,2,2-Tetrachloroethane	79-34-5	2.46	< 2.46	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.46	< 2.46	
1,1,2-Trichloroethane	79-00-5	2.46	< 2.46	
1,1-Dichloroethane	75-34-3	2.46	< 2.46	
1,1-Dichloroethene	75-35-4	2.46	< 2.46	
1,2,3-Trichlorobenzene	87-61-6	2.46	< 2.46	
1,2,4-Trichlorobenzene	120-82-1	2.46	< 2.46	
1,2-Dibromo-3-chloropropane	96-12-8	6.15	< 6.15	
1,2-Dibromoethane	106-93-4	2.46	< 2.46	
1,2-Dichlorobenzene	95-50-1	2.46	< 2.46	
1,2-Dichloroethane	107-06-2	2.46	< 2.46	
1,2-Dichloropropane	78-87-5	2.46	< 2.46	
1,3-Dichlorobenzene	541-73-1	2.46	< 2.46	
1,4-Dichlorobenzene	106-46-7	2.46	< 2.46	
1,4-Dioxane	123-91-1	61.5	< 61.5	
2-Butanone	78-93-3	12.3	< 12.3	\$
2-Hexanone	591-78-6	6.15	< 6.15	
4-Methyl-2-pentanone	108-10-1	6.15	< 6.15	
Acetone	67-64-1	12.3	< 12.3	В
Benzene	71-43-2	2.46	< 2.46	
Bromochloromethane	74-97-5	2.46	< 2.46	
Bromodichloromethane	75-27-4	2.46	< 2.46	
Bromoform	75-25-2	2.46	< 2.46	
Bromomethane	74-83-9	6.15	< 6.15	
Carbon disulfide	75-15-0	2.46	< 2.46	#
Carbon tetrachloride	56-23-5	2.46	< 2.46	
Chlorobenzene	108-90-7	2.46	< 2.46	
Chloroethane	75-00-3	2.46	< 2.46	

Test Code: 8260D-S

Lab Sample ID: 2101481-006A Client Sample ID: MW-10 @ 6.5'

Analyzed: 1/25/2021 1539h **Extracted:**

Units: µg/kg-dry **Dilution Factor:** 1 Method: SW8260D

	- 18	<u> </u>						
American West	Compound Chloroform					porting Limit	Analytical Result	Qual
				67	-66-3	2.46	< 2.46	
	Chlorometha	ine		74	-87-3	3.69	< 3.69	
	cis-1,2-Dich	loroethene		150	5-59-2	2.46	< 2.46	
	cis-1,3-Dich	loropropene		1000	61-01-5	2.46	< 2.46	
3440 South 700 West	Cyclohexane	;		110	0-82-7	2.46	< 2.46	#
t Lake City, UT 84119					4-48-1	2.46	< 2.46	
	Dichlorodifl	uoromethane		75	-71-8	2.46	< 2.46	#
	Ethylbenzene			100	0-41-4	2.46	< 2.46	
Phone: (801) 263-8686	Isopropylber	nzene		98	-82-8	2.46	< 2.46	
ll Free: (888) 263-8686	m,p-Xylene			1796	01-23-1	2.46	< 2.46	
Fax: (801) 263-8687	Methyl Acet	ate		79	-20-9	6.15	< 6.15	
nail: awal@awal-labs.com	Methyl tert-l	outyl ether		163	4-04-4	2.46	< 2.46	
iani. awar cawar iaos.com	Methylcyclo	hexane		108	8-87-2	2.46	< 2.46	#
eb: www.awal-labs.com	Methylene c	hloride		75	-09-2	6.15	6.81	
	Naphthalene			91	-20-3	2.46	< 2.46	
	o-Xylene			95	-47-6	2.46	< 2.46	
Kyle F. Gross	Styrene			100)-42-5	2.46	< 2.46	
Laboratory Director	Tetrachloroe	thene		12'	7-18-4	2.46	13.8	
	Toluene			108	8-88-3	2.46	4.96	
Jose Rocha	trans-1,2-Die	chloroethene		150	6-60-5	2.46	< 2.46	
QA Officer	trans-1,3-Die	chloropropene		1000	61-02-6	2.46	< 2.46	
	Trichloroeth			79	-01-6	2.46	< 2.46	
	Trichloroflu	oromethane		75	-69-4	2.46	< 2.46	
	Vinyl chlorid	le		75	-01-4	1.23	< 1.23	
	Surrogate	Units: μg/kg-dry	CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dic	hloroethane-d4	17060-07-0	60.5	61.54	98.2	70-132	
		ofluorobenzene	460-00-4	66.7	61.54	108	70-125	
	Surr: Dibrom Surr: Toluend	ofluoromethane 2-d8	1868-53-7 2037-26-5	52.6 63.3	61.54 61.54	85.6 103	70-133 70-123	
	Sail. Tolucin		2037 20 3	03.3	01.5	103	70 123	

B - Analyte(s) were observed above the reporting limit in the method blank. The method blank was acceptable, as any associated samples do not have results above the PQL.

Sampling and analytical preparation performed by method 5030A modified for analysis of soil samples collected in 2 or 4 oz jars. #- This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Joe DeGooyer

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical Contact:
Lab Set ID: 2101481 Dept:

Lab Set ID:2101481Dept:MSVOAProject:Forsey's Cleaners Additional MW's / 1210017QC Type:LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-3 012221A	Date Analyzed:	01/22/20	21 814h										
Test Code: 8260D-S													
1,1,1-Trichloroethane	17.6	μg/kg	SW8260D	0.231	2.00	20.00	0	87.8	64 - 137				
1,1,2,2-Tetrachloroethane	19.7	μg/kg	SW8260D	0.370	2.00	20.00	0	98.4	74 - 150				
1,1,2-Trichloro-1,2,2-trifluoroethane	18.7	μg/kg	SW8260D	0.934	2.00	20.00	0	93.5	37 - 170				
1,1,2-Trichloroethane	18.9	μg/kg	SW8260D	0.196	2.00	20.00	0	94.6	80 - 117				
1,1-Dichloroethane	17.0	μg/kg	SW8260D	0.131	2.00	20.00	0	84.8	70 - 175				
1,1-Dichloroethene	15.9	μg/kg	SW8260D	0.675	2.00	20.00	0	79.6	42 - 210				
1,2,3-Trichlorobenzene	16.7	μg/kg	SW8260D	1.03	2.00	20.00	0	83.7	36 - 135				
1,2,4-Trichlorobenzene	15.7	μg/kg	SW8260D	1.18	2.00	20.00	0	78.6	21 - 140				
1,2-Dibromo-3-chloropropane	19.2	μg/kg	SW8260D	0.785	5.00	20.00	0	95.8	62 - 132				
1,2-Dibromoethane	18.6	μg/kg	SW8260D	0.306	2.00	20.00	0	93.1	76 - 125				
1,2-Dichlorobenzene	17.6	μg/kg	SW8260D	0.678	2.00	20.00	0	87.9	56 - 125				
1,2-Dichloroethane	18.0	μg/kg	SW8260D	0.118	2.00	20.00	0	90.1	79 - 135				
1,2-Dichloropropane	17.4	μg/kg	SW8260D	0.820	2.00	20.00	0	86.8	68 - 133				
1,3-Dichlorobenzene	17.2	μg/kg	SW8260D	1.03	2.00	20.00	0	86.0	45 - 135				
1,4-Dichlorobenzene	17.4	μg/kg	SW8260D	0.850	2.00	20.00	0	86.9	43 - 135				
1,4-Dioxane	178	μg/kg	SW8260D	27.7	50.0	200.0	0	88.8	58 - 146				
2-Butanone	24.3	μg/kg	SW8260D	1.31	10.0	20.00	0	121	59 - 184				
2-Hexanone	20.3	μg/kg	SW8260D	0.836	5.00	20.00	0	102	61 - 192				
4-Methyl-2-pentanone	17.9	μg/kg	SW8260D	0.534	5.00	20.00	0	89.6	58 - 145				
Acetone	22.9	μg/kg	SW8260D	8.29	10.0	20.00	0	115	17 - 296				
Benzene	17.0	μg/kg	SW8260D	0.360	2.00	20.00	0	84.8	70 - 140				
Bromochloromethane	16.7	μg/kg	SW8260D	0.239	2.00	20.00	0	83.7	69 - 123				
Bromodichloromethane	16.8	μg/kg	SW8260D	0.983	2.00	20.00	0	84.1	76 - 140				
Bromoform	18.4	μg/kg	SW8260D	0.319	2.00	20.00	0	92.2	71 - 175				
Bromomethane	16.1	μg/kg	SW8260D	2.61	5.00	20.00	0	80.7	10 - 168				
Carbon disulfide	16.6	μg/kg	SW8260D	0.247	2.00	20.00	0	83.2	31 - 174				
Carbon tetrachloride	16.7	μg/kg	SW8260D	0.419	2.00	20.00	0	83.6	58 - 145				
Chlorobenzene	16.9	μg/kg	SW8260D	0.544	2.00	20.00	0	84.4	61 - 125				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-3 012221A	Date Analyzed:	01/22/202	21 814h										
Test Code: 8260D-S													
Chloroethane	18.8	μg/kg	SW8260D	1.24	2.00	20.00	0	93.8	10 - 161				
Chloroform	16.4	μg/kg	SW8260D	0.218	2.00	20.00	0	81.8	74 - 135				
Chloromethane	14.7	μg/kg	SW8260D	2.26	3.00	20.00	0	73.6	30 - 149				
cis-1,2-Dichloroethene	16.8	$\mu g/kg$	SW8260D	0.329	2.00	20.00	0	83.8	63 - 142				
cis-1,3-Dichloropropene	16.9	μg/kg	SW8260D	0.359	2.00	20.00	0	84.4	67 - 127				
Cyclohexane	16.5	μg/kg	SW8260D	0.800	2.00	20.00	0	82.6	44 - 162				
Dibromochloromethane	17.7	μg/kg	SW8260D	0.136	2.00	20.00	0	88.6	76 - 121				
Dichlorodifluoromethane	15.2	μg/kg	SW8260D	1.39	2.00	20.00	0	76.1	20 - 130				
Ethylbenzene	17.2	μg/kg	SW8260D	0.675	2.00	20.00	0	86.2	52 - 140				
Isopropylbenzene	17.5	μg/kg	SW8260D	1.85	2.00	20.00	0	87.6	50 - 140				
m,p-Xylene	35.3	μg/kg	SW8260D	0.942	2.00	40.00	0	88.2	44 - 142				
Methyl Acetate	33.1	μg/kg	SW8260D	2.21	5.00	20.00	0	166	70 - 240				
Methyl tert-butyl ether	17.9	μg/kg	SW8260D	0.210	2.00	20.00	0	89.3	60 - 128				
Methylcyclohexane	15.9	μg/kg	SW8260D	1.46	2.00	20.00	0	79.6	41 - 171				
Methylene chloride	12.7	μg/kg	SW8260D	1.81	5.00	20.00	0	63.5	10 - 128				
Naphthalene	17.3	μg/kg	SW8260D	1.06	2.00	20.00	0	86.6	43 - 135				
o-Xylene	17.0	μg/kg	SW8260D	0.696	2.00	20.00	0	85.0	44 - 142				
Styrene	17.8	μg/kg	SW8260D	0.739	2.00	20.00	0	89.1	56 - 140				
Tetrachloroethene	18.3	μg/kg	SW8260D	0.533	2.00	20.00	0	91.3	40 - 200				
Toluene	17.2	μg/kg	SW8260D	0.612	2.00	20.00	0	86.2	54 - 132				
trans-1,2-Dichloroethene	15.6	μg/kg	SW8260D	0.261	2.00	20.00	0	78.0	57 - 175				
trans-1,3-Dichloropropene	17.5	μg/kg	SW8260D	0.341	2.00	20.00	0	87.5	66 - 117				
Trichloroethene	16.5	μg/kg	SW8260D	0.390	2.00	20.00	0	82.6	61 - 143				
Trichlorofluoromethane	17.4	μg/kg	SW8260D	0.236	2.00	20.00	0	87.1	10 - 140				
Vinyl chloride	16.4	μg/kg	SW8260D	0.228	1.00	20.00	0	82.2	47 - 135				
Surr: 1,2-Dichloroethane-d4	49.4	μg/kg	SW8260D			50.00		98.9	70 - 132				
Surr: 4-Bromofluorobenzene	51.0	μg/kg	SW8260D			50.00		102	70 - 125				
Surr: Dibromofluoromethane	48.9	μg/kg	SW8260D			50.00		97.7	70 - 133				

Report Date: 1/26/2021 Page 15 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:Applied GeotechnicalContact:Joe DeGooyerLab Set ID:2101481Dept:MSVOA

Project: Forsey's Cleaners Additional MW's / 1210017

QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-3 012221ATest Code:8260D-S	Date Analyzed:	01/22/202	21 814h										
Surr: Toluene-d8	51.6	μg/kg	SW8260D			50.00		103	70 - 123				
Lab Sample ID: LCS VOC-3 012521A Test Code: 8260D-S	Date Analyzed:	01/25/202	21 652h										
1,1,1-Trichloroethane	20.2	μg/kg	SW8260D	0.231	2.00	20.00	0	101	64 - 137				
1,1,2,2-Tetrachloroethane	20.9	μg/kg	SW8260D	0.370	2.00	20.00	0	105	74 - 150				
1,1,2-Trichloro-1,2,2-trifluoroethane	18.9	μg/kg	SW8260D	0.934	2.00	20.00	0	94.7	37 - 170				
1,1,2-Trichloroethane	20.5	μg/kg	SW8260D	0.196	2.00	20.00	0	103	80 - 117				
1,1-Dichloroethane	19.3	μg/kg	SW8260D	0.131	2.00	20.00	0	96.7	70 - 175				
1,1-Dichloroethene	19.1	μg/kg	SW8260D	0.675	2.00	20.00	0	95.3	42 - 210				
1,2,3-Trichlorobenzene	20.9	μg/kg	SW8260D	1.03	2.00	20.00	0	104	36 - 135				
1,2,4-Trichlorobenzene	20.8	$\mu g/kg$	SW8260D	1.18	2.00	20.00	0	104	21 - 140				
1,2-Dibromo-3-chloropropane	20.0	$\mu g/kg$	SW8260D	0.785	5.00	20.00	0	100	62 - 132				
1,2-Dibromoethane	20.4	$\mu g/kg$	SW8260D	0.306	2.00	20.00	0	102	76 - 125				
1,2-Dichlorobenzene	20.2	$\mu g/kg$	SW8260D	0.678	2.00	20.00	0	101	56 - 125				
1,2-Dichloroethane	19.3	$\mu g/kg$	SW8260D	0.118	2.00	20.00	0	96.6	79 - 135				
1,2-Dichloropropane	19.3	$\mu g/kg$	SW8260D	0.820	2.00	20.00	0	96.7	68 - 133				
1,3-Dichlorobenzene	21.1	$\mu g/kg$	SW8260D	1.03	2.00	20.00	0	105	45 - 135				
1,4-Dichlorobenzene	20.7	$\mu g/kg$	SW8260D	0.850	2.00	20.00	0	104	43 - 135				
1,4-Dioxane	159	$\mu g/kg$	SW8260D	27.7	50.0	200.0	0	79.6	58 - 146				
2-Butanone	26.4	$\mu g/kg$	SW8260D	1.31	10.0	20.00	0	132	59 - 184				
2-Hexanone	30.8	$\mu g/kg$	SW8260D	0.836	5.00	20.00	0	154	61 - 192				
4-Methyl-2-pentanone	17.6	$\mu g/kg$	SW8260D	0.534	5.00	20.00	0	88.0	58 - 145				
Acetone	39.1	$\mu g/kg$	SW8260D	8.29	10.0	20.00	0	195	17 - 296				
Benzene	19.7	$\mu g/kg$	SW8260D	0.360	2.00	20.00	0	98.6	70 - 140				
Bromochloromethane	18.2	$\mu g/kg$	SW8260D	0.239	2.00	20.00	0	91.0	69 - 123				
Bromodichloromethane	18.9	$\mu g/kg$	SW8260D	0.983	2.00	20.00	0	94.6	76 - 140				
Bromoform	20.2	$\mu g/kg$	SW8260D	0.319	2.00	20.00	0	101	71 - 175				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Joe DeGooyer

Applied Geotechnical **Client: Contact:**

Lab Set ID: 2101481 MSVOA Dept: **Project:**

QC Type: LCS Forsey's Cleaners Additional MW's / 1210017

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-3 012521A	Date Analyzed:	01/25/202	21 652h										
Test Code: 8260D-S													
Bromomethane	17.2	μg/kg	SW8260D	2.61	5.00	20.00	0	86.2	10 - 168				
Carbon disulfide	19.2	μg/kg	SW8260D	0.247	2.00	20.00	0	96.0	31 - 174				
Carbon tetrachloride	19.3	$\mu g/kg$	SW8260D	0.419	2.00	20.00	0	96.7	58 - 145				
Chlorobenzene	20.0	$\mu g/kg$	SW8260D	0.544	2.00	20.00	0	100	61 - 125				
Chloroethane	18.4	$\mu g/kg$	SW8260D	1.24	2.00	20.00	0	92.1	10 - 161				
Chloroform	18.1	$\mu g/kg$	SW8260D	0.218	2.00	20.00	0	90.6	74 - 135				
Chloromethane	17.5	$\mu g/kg$	SW8260D	2.26	3.00	20.00	0	87.6	30 - 149				
cis-1,2-Dichloroethene	18.8	$\mu g/kg$	SW8260D	0.329	2.00	20.00	0	93.9	63 - 142				
cis-1,3-Dichloropropene	19.7	$\mu g/kg$	SW8260D	0.359	2.00	20.00	0	98.3	67 - 127				
Cyclohexane	16.6	$\mu g/kg$	SW8260D	0.800	2.00	20.00	0	82.9	44 - 162				
Dibromochloromethane	19.4	$\mu g/kg$	SW8260D	0.136	2.00	20.00	0	97.0	76 - 121				
Dichlorodifluoromethane	21.6	$\mu g/kg$	SW8260D	1.39	2.00	20.00	0	108	20 - 130				
Ethylbenzene	21.2	$\mu g/kg$	SW8260D	0.675	2.00	20.00	0	106	52 - 140				
Isopropylbenzene	21.3	$\mu g/kg$	SW8260D	1.85	2.00	20.00	0	107	50 - 140				
m,p-Xylene	43.7	$\mu g/kg$	SW8260D	0.942	2.00	40.00	0	109	44 - 142				
Methyl Acetate	24.7	$\mu g/kg$	SW8260D	2.21	5.00	20.00	0	124	70 - 240				
Methyl tert-butyl ether	17.5	$\mu g/kg$	SW8260D	0.210	2.00	20.00	0	87.4	60 - 128				
Methylcyclohexane	18.1	$\mu g/kg$	SW8260D	1.46	2.00	20.00	0	90.3	41 - 171				
Methylene chloride	14.5	$\mu g/kg$	SW8260D	1.81	5.00	20.00	0	72.6	10 - 128				
Naphthalene	20.1	$\mu g/kg$	SW8260D	1.06	2.00	20.00	0	101	43 - 135				
o-Xylene	20.2	μg/kg	SW8260D	0.696	2.00	20.00	0	101	44 - 142				
Styrene	20.7	$\mu g/kg$	SW8260D	0.739	2.00	20.00	0	104	56 - 140				
Tetrachloroethene	22.2	$\mu g/kg$	SW8260D	0.533	2.00	20.00	0	111	40 - 200				
Toluene	20.4	$\mu g/kg$	SW8260D	0.612	2.00	20.00	0	102	54 - 132				
trans-1,2-Dichloroethene	18.3	$\mu g/kg$	SW8260D	0.261	2.00	20.00	0	91.5	57 - 175				
trans-1,3-Dichloropropene	19.8	$\mu g/kg$	SW8260D	0.341	2.00	20.00	0	99.2	66 - 117				
Trichloroethene	20.1	$\mu g/kg$	SW8260D	0.390	2.00	20.00	0	100	61 - 143				
Trichlorofluoromethane	19.9	$\mu g/kg$	SW8260D	0.236	2.00	20.00	0	99.7	10 - 140				

Report Date: 1/26/2021 Page 17 of 29

American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Contact: Joe DeGooyer

Lab Set ID: 2101481

Dept: MSVOA

QC Type: LCS

Project: Forsey's Cleaners Additional MW's / 1210017

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-3 012521ATest Code:8260D-S	Date Analyzed:	01/25/20	21 652h										
Vinyl chloride	18.8	μg/kg	SW8260D	0.228	1.00	20.00	0	93.8	47 - 135				
Surr: 1,2-Dichloroethane-d4	50.8	μg/kg	SW8260D			50.00		102	70 - 132				
Surr: 4-Bromofluorobenzene	53.8	μg/kg	SW8260D			50.00		108	70 - 125				
Surr: Dibromofluoromethane	48.6	μg/kg	SW8260D			50.00		97.3	70 - 133				
Surr: Toluene-d8	54.5	$\mu g/kg$	SW8260D			50.00		109	70 - 123				

Report Date: 1/26/2021 Page 18 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MBLK

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
3 012221A	Date Analyzed:	01/22/202	21 834h										
	< 2.00	μg/kg	SW8260D	0.231	2.00								
	< 2.00		SW8260D	0.370	2.00								
oethane	< 2.00	μg/kg	SW8260D	0.934	2.00								
	< 2.00	μg/kg	SW8260D	0.196	2.00								
	< 2.00	μg/kg	SW8260D	0.131	2.00								
	< 2.00	μg/kg	SW8260D	0.675	2.00								
	< 2.00	μg/kg	SW8260D	1.03	2.00								
	< 2.00	μg/kg	SW8260D	1.18	2.00								
e	< 5.00	μg/kg	SW8260D	0.785	5.00								
	< 2.00	μg/kg	SW8260D	0.306	2.00								
	< 2.00	μg/kg	SW8260D	0.678	2.00								
	< 2.00	μg/kg	SW8260D	0.118	2.00								
	< 2.00	μg/kg	SW8260D	0.820	2.00								
	< 2.00	μg/kg	SW8260D	1.03	2.00								
	< 2.00	μg/kg	SW8260D	0.850	2.00								
	< 50.0	μg/kg	SW8260D	27.7	50.0								
	< 10.0	μg/kg	SW8260D	1.31	10.0								
	< 5.00	μg/kg	SW8260D	0.836	5.00								
	< 5.00	μg/kg	SW8260D	0.534	5.00								
	< 10.0	μg/kg	SW8260D	8.29	10.0								
	< 2.00	μg/kg	SW8260D	0.360	2.00								
	< 2.00	μg/kg	SW8260D	0.239	2.00								
	< 2.00	μg/kg	SW8260D	0.983	2.00								
	< 2.00	μg/kg	SW8260D	0.319	2.00								
	< 5.00	μg/kg	SW8260D	2.61	5.00								
	< 2.00	μg/kg	SW8260D	0.247	2.00								
	< 2.00	μg/kg	SW8260D	0.419	2.00								
	< 2.00	μg/kg	SW8260D	0.544	2.00								
	pethane	Solution Color C	Company	Company	Solution	Result Units Method MDL Limit 3 012221A Date Analyzed: 01/22/2021 834h 2.00	Result Units Method MDL Limit Spiked	Result Units Method MDL Limit Spiked Amount	Result Units Method MDL Limit Spiked Amount %REC	Result Units Method MDL Limit Spiked Amount %REC Limits	New Note	Result Units Method MDL Limit Spiked Amount %REC Limits Amt % RPD	Nesult Units Method MDL Limit Spiked Amount MREC Limits Amt Method MDL Limit Spiked Amount Method Metho

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-3 012221A	Date Analyzed:	01/22/202	21 834h										
Test Code: 8260D-S													
Chloroethane	< 2.00	μg/kg	SW8260D	1.24	2.00								
Chloroform	< 2.00	μg/kg	SW8260D	0.218	2.00								
Chloromethane	< 3.00	μg/kg	SW8260D	2.26	3.00								
cis-1,2-Dichloroethene	< 2.00	μg/kg	SW8260D	0.329	2.00								
cis-1,3-Dichloropropene	< 2.00	μg/kg	SW8260D	0.359	2.00								
Cyclohexane	< 2.00	μg/kg	SW8260D	0.800	2.00								
Dibromochloromethane	< 2.00	μg/kg	SW8260D	0.136	2.00								
Dichlorodifluoromethane	< 2.00	μg/kg	SW8260D	1.39	2.00								
Ethylbenzene	< 2.00	μg/kg	SW8260D	0.675	2.00								
Isopropylbenzene	< 2.00	μg/kg	SW8260D	1.85	2.00								
m,p-Xylene	< 2.00	μg/kg	SW8260D	0.942	2.00								
Methyl Acetate	< 5.00	μg/kg	SW8260D	2.21	5.00								
Methyl tert-butyl ether	< 2.00	μg/kg	SW8260D	0.210	2.00								
Methylcyclohexane	< 2.00	$\mu g/kg$	SW8260D	1.46	2.00								
Methylene chloride	< 5.00	μg/kg	SW8260D	1.81	5.00								
Naphthalene	< 2.00	$\mu g/kg$	SW8260D	1.06	2.00								
o-Xylene	< 2.00	$\mu g/kg$	SW8260D	0.696	2.00								
Styrene	< 2.00	μg/kg	SW8260D	0.739	2.00								
Tetrachloroethene	< 2.00	μg/kg	SW8260D	0.533	2.00								
Toluene	< 2.00	μg/kg	SW8260D	0.612	2.00								
trans-1,2-Dichloroethene	< 2.00	μg/kg	SW8260D	0.261	2.00								
trans-1,3-Dichloropropene	< 2.00	μg/kg	SW8260D	0.341	2.00								
Trichloroethene	< 2.00	μg/kg	SW8260D	0.390	2.00								
Trichlorofluoromethane	< 2.00	μg/kg	SW8260D	0.236	2.00								
Vinyl chloride	< 1.00	μg/kg	SW8260D	0.228	1.00								
Surr: 1,2-Dichloroethane-d4	49.0	μg/kg	SW8260D			50.00		98.0	70 - 132				
Surr: 4-Bromofluorobenzene	50.2	μg/kg	SW8260D			50.00		100	68 - 125				
Surr: Dibromofluoromethane	48.1	μg/kg	SW8260D			50.00		96.2	70 - 133				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-3 012221A Test Code: 8260D-S	Date Analyzed:	01/22/20	21 834h										
Surr: Toluene-d8	50.6	μg/kg	SW8260D			50.00		101	61 - 123				
Lab Sample ID: MB VOC-3 0125521A Test Code: 8260D-S	Date Analyzed:	01/25/202	21 712h										
1,1,1-Trichloroethane	< 2.00	μg/kg	SW8260D	0.231	2.00								
1,1,2,2-Tetrachloroethane	< 2.00	μg/kg	SW8260D	0.370	2.00								
1,1,2-Trichloro-1,2,2-trifluoroethane	< 2.00	μg/kg	SW8260D	0.934	2.00								
1,1,2-Trichloroethane	< 2.00	μg/kg	SW8260D	0.196	2.00								
1,1-Dichloroethane	< 2.00	μg/kg	SW8260D	0.131	2.00								
1,1-Dichloroethene	< 2.00	μg/kg	SW8260D	0.675	2.00								
1,2,3-Trichlorobenzene	< 2.00	μg/kg	SW8260D	1.03	2.00								
1,2,4-Trichlorobenzene	< 2.00	μg/kg	SW8260D	1.18	2.00								
1,2-Dibromo-3-chloropropane	< 5.00	μg/kg	SW8260D	0.785	5.00								
1,2-Dibromoethane	< 2.00	μg/kg	SW8260D	0.306	2.00								
1,2-Dichlorobenzene	< 2.00	μg/kg	SW8260D	0.678	2.00								
1,2-Dichloroethane	< 2.00	μg/kg	SW8260D	0.118	2.00								
1,2-Dichloropropane	< 2.00	μg/kg	SW8260D	0.820	2.00								
1,3-Dichlorobenzene	< 2.00	μg/kg	SW8260D	1.03	2.00								
1,4-Dichlorobenzene	< 2.00	μg/kg	SW8260D	0.850	2.00								
1,4-Dioxane	< 50.0	μg/kg	SW8260D	27.7	50.0								
2-Butanone	< 10.0	μg/kg	SW8260D	1.31	10.0								
2-Hexanone	< 5.00	μg/kg	SW8260D	0.836	5.00								
4-Methyl-2-pentanone	< 5.00	μg/kg	SW8260D	0.534	5.00								
Acetone	12.7	μg/kg	SW8260D	8.29	10.0								В
Benzene	< 2.00	μg/kg	SW8260D	0.360	2.00								
Bromochloromethane	< 2.00	μg/kg	SW8260D	0.239	2.00								
Bromodichloromethane	< 2.00	μg/kg	SW8260D	0.983	2.00								
Bromoform	< 2.00	μg/kg	SW8260D	0.319	2.00								

Report Date: 1/26/2021 Page 21 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-3 0125521A	Date Analyzed:	01/25/20	21 712h										
Test Code: 8260D-S													
Bromomethane	< 5.00	μg/kg	SW8260D	2.61	5.00								
Carbon disulfide	< 2.00	μg/kg	SW8260D	0.247	2.00								
Carbon tetrachloride	< 2.00	μg/kg	SW8260D	0.419	2.00								
Chlorobenzene	< 2.00	μg/kg	SW8260D	0.544	2.00								
Chloroethane	< 2.00	μg/kg	SW8260D	1.24	2.00								
Chloroform	< 2.00	μg/kg	SW8260D	0.218	2.00								
Chloromethane	< 3.00	μg/kg	SW8260D	2.26	3.00								
cis-1,2-Dichloroethene	< 2.00	μg/kg	SW8260D	0.329	2.00								
cis-1,3-Dichloropropene	< 2.00	μg/kg	SW8260D	0.359	2.00								
Cyclohexane	< 2.00	μg/kg	SW8260D	0.800	2.00								
Dibromochloromethane	< 2.00	μg/kg	SW8260D	0.136	2.00								
Dichlorodifluoromethane	< 2.00	μg/kg	SW8260D	1.39	2.00								
Ethylbenzene	< 2.00	$\mu g/kg$	SW8260D	0.675	2.00								
Isopropylbenzene	< 2.00	μg/kg	SW8260D	1.85	2.00								
m,p-Xylene	< 2.00	μg/kg	SW8260D	0.942	2.00								
Methyl Acetate	< 5.00	μg/kg	SW8260D	2.21	5.00								
Methyl tert-butyl ether	< 2.00	μg/kg	SW8260D	0.210	2.00								
Methylcyclohexane	< 2.00	$\mu g/kg$	SW8260D	1.46	2.00								
Methylene chloride	< 5.00	μg/kg	SW8260D	1.81	5.00								
Naphthalene	< 2.00	μg/kg	SW8260D	1.06	2.00								
o-Xylene	< 2.00	μg/kg	SW8260D	0.696	2.00								
Styrene	< 2.00	μg/kg	SW8260D	0.739	2.00								
Tetrachloroethene	< 2.00	μg/kg	SW8260D	0.533	2.00								
Toluene	< 2.00	μg/kg	SW8260D	0.612	2.00								
trans-1,2-Dichloroethene	< 2.00	μg/kg	SW8260D	0.261	2.00								
trans-1,3-Dichloropropene	< 2.00	$\mu g/kg$	SW8260D	0.341	2.00								
Trichloroethene	< 2.00	$\mu g/kg$	SW8260D	0.390	2.00								
Trichlorofluoromethane	< 2.00	$\mu g/kg$	SW8260D	0.236	2.00								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Forsey's Cleaners Additional MW's / 1210017

Lab Set ID: 2101481

Project:

Contact:

Joe DeGooyer

Dept:

MSVOA

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:MB VOC-3 0125521ATest Code:8260D-S	Date Analyzed:	01/25/202	1 712h										
Vinyl chloride	< 1.00	μg/kg	SW8260D	0.228	1.00								
Surr: 1,2-Dichloroethane-d4	54.2	μg/kg	SW8260D			50.00		108	70 - 132				
Surr: 4-Bromofluorobenzene	54.7	μg/kg	SW8260D			50.00		109	68 - 125				
Surr: Dibromofluoromethane	50.2	μg/kg	SW8260D			50.00		100	70 - 133				
Surr: Toluene-d8	55.1	μg/kg	SW8260D			50.00		110	61 - 123				

B - Analyte(s) were observed above the reporting limit in the method blank. The method blank was acceptable, as any associated samples do not have results above the reporting limit/PQL.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

... Set 12. 2101 101

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101276-002CMS Test Code: 8260D-S	Date Analyzo	ed: 01/25/202	1 914h										
1,1,1-Trichloroethane	17.0	μg/kg-dry	SW8260D	0.251	2.18	21.76	0	78.1	64 - 137				
1,1,2,2-Tetrachloroethane	20.0	μg/kg-dry	SW8260D	0.403	2.18	21.76	0	92.0	74 - 150				
1,1,2-Trichloro-1,2,2-trifluoroethane	15.8	μg/kg-dry	SW8260D	1.02	2.18	21.76	0	72.7	37 - 170				
1,1,2-Trichloroethane	21.1	μg/kg-dry	SW8260D	0.213	2.18	21.76	0	96.8	80 - 117				
1,1-Dichloroethane	16.7	μg/kg-dry	SW8260D	0.143	2.18	21.76	0	76.8	70 - 175				
1,1-Dichloroethene	16.0	μg/kg-dry	SW8260D	0.734	2.18	21.76	0	73.6	42 - 210				
1,2,3-Trichlorobenzene	20.0	μg/kg-dry	SW8260D	1.12	2.18	21.76	0	92.0	36 - 135				
1,2,4-Trichlorobenzene	19.9	μg/kg-dry	SW8260D	1.28	2.18	21.76	0	91.7	21 - 140				
1,2-Dibromo-3-chloropropane	19.8	μg/kg-dry	SW8260D	0.854	5.44	21.76	0	90.9	62 - 132				
1,2-Dibromoethane	21.0	μg/kg-dry	SW8260D	0.333	2.18	21.76	0	96.5	76 - 125				
1,2-Dichlorobenzene	19.5	μg/kg-dry	SW8260D	0.738	2.18	21.76	0	89.8	56 - 125				
1,2-Dichloroethane	19.5	μg/kg-dry	SW8260D	0.128	2.18	21.76	0	89.7	79 - 135				
1,2-Dichloropropane	18.9	μg/kg-dry	SW8260D	0.892	2.18	21.76	0	86.9	68 - 133				
1,3-Dichlorobenzene	19.6	μg/kg-dry	SW8260D	1.12	2.18	21.76	0	90.0	45 - 135				
1,4-Dichlorobenzene	19.7	μg/kg-dry	SW8260D	0.925	2.18	21.76	0	90.7	43 - 135				
1,4-Dioxane	183	μg/kg-dry	SW8260D	30.1	54.4	217.6	0	84.1	58 - 146				
2-Butanone	19.5	μg/kg-dry	SW8260D	1.43	10.9	21.76	0	89.7	59 - 184				
2-Hexanone	19.2	μg/kg-dry	SW8260D	0.910	5.44	21.76	0	88.3	61 - 192				
4-Methyl-2-pentanone	18.8	μg/kg-dry	SW8260D	0.581	5.44	21.76	0	86.6	58 - 145				
Acetone	21.3	μg/kg-dry	SW8260D	9.02	10.9	21.76	0	98.0	17 - 296				
Benzene	17.9	μg/kg-dry	SW8260D	0.392	2.18	21.76	1.45	75.6	70 - 140				
Bromochloromethane	18.0	μg/kg-dry	SW8260D	0.260	2.18	21.76	0	82.6	69 - 123				
Bromodichloromethane	18.4	μg/kg-dry	SW8260D	1.07	2.18	21.76	0	84.7	76 - 140				
Bromoform	19.7	μg/kg-dry	SW8260D	0.347	2.18	21.76	0	90.7	71 - 175				
Bromomethane	14.5	μg/kg-dry	SW8260D	2.84	5.44	21.76	0	66.6	10 - 168				
Carbon disulfide	15.3	μg/kg-dry	SW8260D	0.269	2.18	21.76	0	70.3	31 - 174				
Carbon tetrachloride	16.8	μg/kg-dry	SW8260D	0.456	2.18	21.76	0	77.4	58 - 145				
Chlorobenzene	18.4	μg/kg-dry	SW8260D	0.592	2.18	21.76	0	84.8	61 - 125				

Report Date: 1/26/2021 Page 24 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101276-002C	MS Date Analyzed:	01/25/202	1 914h										
Test Code: 8260D-S													
Chloroethane	15.8	$\mu g/kg\text{-}dry$	SW8260D	1.35	2.18	21.76	0	72.6	10 - 161				
Chloroform	16.3	$\mu g/kg$ -dry	SW8260D	0.237	2.18	21.76	0	74.9	74 - 135				
Chloromethane	14.5	$\mu g/kg$ -dry	SW8260D	2.46	3.26	21.76	0	66.6	30 - 149				
cis-1,2-Dichloroethene	17.2	μg/kg-dry	SW8260D	0.358	2.18	21.76	0	79.0	63 - 142				
cis-1,3-Dichloropropene	18.9	μg/kg-dry	SW8260D	0.391	2.18	21.76	0	86.8	67 - 127				
Cyclohexane	14.1	μg/kg-dry	SW8260D	0.870	2.18	21.76	0	64.6	44 - 162				
Dibromochloromethane	19.1	μg/kg-dry	SW8260D	0.148	2.18	21.76	0	87.9	76 - 121				
Dichlorodifluoromethane	17.3	μg/kg-dry	SW8260D	1.51	2.18	21.76	0	79.5	20 - 130				
Ethylbenzene	18.6	μg/kg-dry	SW8260D	0.734	2.18	21.76	0	85.4	52 - 140				
Isopropylbenzene	18.9	μg/kg-dry	SW8260D	2.01	2.18	21.76	0	86.8	50 - 140				
m,p-Xylene	40.0	μg/kg-dry	SW8260D	1.02	2.18	43.52	3.7	83.4	44 - 142				
Methyl Acetate	26.2	μg/kg-dry	SW8260D	2.40	5.44	21.76	0	120	70 - 240				
Methyl tert-butyl ether	18.5	μg/kg-dry	SW8260D	0.228	2.18	21.76	0	85.1	60 - 128				
Methylcyclohexane	15.0	μg/kg-dry	SW8260D	1.59	2.18	21.76	0	69.1	41 - 171				
Methylene chloride	13.6	μg/kg-dry	SW8260D	1.97	5.44	21.76	0	62.4	10 - 128				
Naphthalene	20.0	μg/kg-dry	SW8260D	1.15	2.18	21.76	0	92.1	43 - 135				
o-Xylene	19.3	μg/kg-dry	SW8260D	0.757	2.18	21.76	1.1	83.6	44 - 142				
Styrene	19.6	μg/kg-dry	SW8260D	0.804	2.18	21.76	0	90.2	56 - 140				
Tetrachloroethene	30.1	μg/kg-dry	SW8260D	0.580	2.18	21.76	0	138	40 - 200				
Toluene	20.4	μg/kg-dry	SW8260D	0.666	2.18	21.76	4.57	72.7	54 - 132				
trans-1,2-Dichloroethene	16.1	μg/kg-dry	SW8260D	0.284	2.18	21.76	0	74.1	57 - 175				
trans-1,3-Dichloropropene	19.8	μg/kg-dry	SW8260D	0.371	2.18	21.76	0	90.9	66 - 117				
Trichloroethene	18.5	μg/kg-dry	SW8260D	0.424	2.18	21.76	0	85.1	61 - 143				
Trichlorofluoromethane	16.5	μg/kg-dry	SW8260D	0.257	2.18	21.76	0	75.8	10 - 140				
Vinyl chloride	14.9	μg/kg-dry	SW8260D	0.248	1.09	21.76	0	68.6	47 - 135				
Surr: 1,2-Dichloroethane-d4	54.9	μg/kg-dry	SW8260D			54.40		101	70 - 132				
Surr: 4-Bromofluorobenzene	58.4	μg/kg-dry	SW8260D			54.40		107	70 - 125				
Surr: Dibromofluoromethane	52.2	μg/kg-dry	SW8260D			54.40		95.9	70 - 133				

Report Date: 1/26/2021 Page 25 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101276-002CMS Test Code: 8260D-S	Date Analyze	d: 01/25/202	1 914h										
Surr: Toluene-d8	58.4	μg/kg-dry	SW8260D			54.40		107	70 - 123				

Report Date: 1/26/2021 Page 26 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:2101276-002CMSDTest Code:8260D-S	Date Analyz	ed: 01/25/202	1 934h										
1,1,1-Trichloroethane	15.9	μg/kg-dry	SW8260D	0.249	2.15	21.54	0	73.8	64 - 137	17	6.67	35	
1,1,2,2-Tetrachloroethane	20.0	μg/kg-dry	SW8260D	0.399	2.15	21.54	0	92.7	74 - 150	20	0.247	35	
1,1,2-Trichloro-1,2,2-trifluoroethane	15.1	μg/kg-dry	SW8260D	1.01	2.15	21.54	0	69.9	37 - 170	15.8	4.86	35	
1,1,2-Trichloroethane	19.9	μg/kg-dry	SW8260D	0.211	2.15	21.54	0	92.3	80 - 117	21.1	5.76	35	
1,1-Dichloroethane	15.8	μg/kg-dry	SW8260D	0.141	2.15	21.54	0	73.2	70 - 175	16.7	5.74	35	
1,1-Dichloroethene	15.0	μg/kg-dry	SW8260D	0.727	2.15	21.54	0	69.6	42 - 210	16	6.59	35	
1,2,3-Trichlorobenzene	18.9	μg/kg-dry	SW8260D	1.11	2.15	21.54	0	87.8	36 - 135	20	5.62	35	
1,2,4-Trichlorobenzene	18.5	μg/kg-dry	SW8260D	1.27	2.15	21.54	0	86.1	21 - 140	19.9	7.25	35	
1,2-Dibromo-3-chloropropane	20.7	μg/kg-dry	SW8260D	0.846	5.39	21.54	0	96.1	62 - 132	19.8	4.61	35	
1,2-Dibromoethane	21.0	μg/kg-dry	SW8260D	0.330	2.15	21.54	0	97.7	76 - 125	21	0.283	35	
1,2-Dichlorobenzene	18.3	μg/kg-dry	SW8260D	0.730	2.15	21.54	0	84.8	56 - 125	19.5	6.73	35	
1,2-Dichloroethane	19.4	μg/kg-dry	SW8260D	0.127	2.15	21.54	0	90.0	79 - 135	19.5	0.615	35	
1,2-Dichloropropane	17.9	μg/kg-dry	SW8260D	0.883	2.15	21.54	0	83.1	68 - 133	18.9	5.54	35	
1,3-Dichlorobenzene	17.8	μg/kg-dry	SW8260D	1.11	2.15	21.54	0	82.6	45 - 135	19.6	9.64	35	
1,4-Dichlorobenzene	18.3	μg/kg-dry	SW8260D	0.916	2.15	21.54	0	85.1	43 - 135	19.7	7.43	35	
1,4-Dioxane	185	μg/kg-dry	SW8260D	29.8	53.9	215.4	0	85.8	58 - 146	183	0.990	35	
2-Butanone	21.8	μg/kg-dry	SW8260D	1.41	10.8	21.54	0	101	59 - 184	19.5	11.1	35	
2-Hexanone	20.3	μg/kg-dry	SW8260D	0.900	5.39	21.54	0	94.0	61 - 192	19.2	5.31	35	
4-Methyl-2-pentanone	20.0	μg/kg-dry	SW8260D	0.575	5.39	21.54	0	93.1	58 - 145	18.8	6.23	35	
Acetone	22.7	μg/kg-dry	SW8260D	8.93	10.8	21.54	0	105	17 - 296	21.3	6.32	35	
Benzene	17.0	μg/kg-dry	SW8260D	0.388	2.15	21.54	1.45	72.3	70 - 140	17.9	4.91	35	
Bromochloromethane	17.3	μg/kg-dry	SW8260D	0.257	2.15	21.54	0	80.4	69 - 123	18	3.77	35	
Bromodichloromethane	17.6	μg/kg-dry	SW8260D	1.06	2.15	21.54	0	81.6	76 - 140	18.4	4.67	35	
Bromoform	19.7	μg/kg-dry	SW8260D	0.344	2.15	21.54	0	91.6	71 - 175	19.7	0.0722	35	
Bromomethane	13.3	μg/kg-dry	SW8260D	2.81	5.39	21.54	0	61.9	10 - 168	14.5	8.32	35	
Carbon disulfide	14.3	μg/kg-dry	SW8260D	0.266	2.15	21.54	0	66.3	31 - 174	15.3	6.79	35	
Carbon tetrachloride	15.0	μg/kg-dry	SW8260D	0.451	2.15	21.54	0	69.7	58 - 145	16.8	11.5	35	
Chlorobenzene	16.9	μg/kg-dry	SW8260D	0.586	2.15	21.54	0	78.3	61 - 125	18.4	8.91	35	

Report Date: 1/26/2021 Page 27 of 29

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101276-002CMSD Test Code: 8260D-S	Date Analyzed	: 01/25/202	1 934h										
Chloroethane	16.5	μg/kg-dry	SW8260D	1.34	2.15	21.54	0	76.5	10 - 161	15.8	4.30	35	
Chloroform	16.2	μg/kg-dry	SW8260D	0.235	2.15	21.54	0	75.1	74 - 135	16.3	0.805	35	
Chloromethane	13.7	μg/kg-dry	SW8260D	2.43	3.23	21.54	0	63.5	30 - 149	14.5	5.77	35	
cis-1,2-Dichloroethene	16.8	μg/kg-dry	SW8260D	0.354	2.15	21.54	0	77.9	63 - 142	17.2	2.34	35	
cis-1,3-Dichloropropene	18.7	μg/kg-dry	SW8260D	0.387	2.15	21.54	0	86.9	67 - 127	18.9	0.832	35	
Cyclohexane	12.7	μg/kg-dry	SW8260D	0.862	2.15	21.54	0	59.0	44 - 162	14.1	10.1	35	
Dibromochloromethane	19.0	μg/kg-dry	SW8260D	0.146	2.15	21.54	0	88.4	76 - 121	19.1	0.494	35	
Dichlorodifluoromethane	15.2	μg/kg-dry	SW8260D	1.50	2.15	21.54	0	70.7	20 - 130	17.3	12.7	35	
Ethylbenzene	16.5	μg/kg-dry	SW8260D	0.727	2.15	21.54	0	76.5	52 - 140	18.6	12.0	35	
Isopropylbenzene	16.6	μg/kg-dry	SW8260D	1.99	2.15	21.54	0	76.9	50 - 140	18.9	13.2	35	
m,p-Xylene	36.0	μg/kg-dry	SW8260D	1.01	2.15	43.09	3.7	74.9	44 - 142	40	10.6	35	
Methyl Acetate	28.2	μg/kg-dry	SW8260D	2.38	5.39	21.54	0	131	70 - 240	26.2	7.39	35	
Methyl tert-butyl ether	18.4	μg/kg-dry	SW8260D	0.226	2.15	21.54	0	85.4	60 - 128	18.5	0.653	35	
Methylcyclohexane	13.0	μg/kg-dry	SW8260D	1.57	2.15	21.54	0	60.2	41 - 171	15	14.8	35	
Methylene chloride	13.5	μg/kg-dry	SW8260D	1.95	5.39	21.54	0	62.5	10 - 128	13.6	0.765	35	
Naphthalene	20.0	μg/kg-dry	SW8260D	1.14	2.15	21.54	0	92.8	43 - 135	20	0.248	35	
o-Xylene	17.6	μg/kg-dry	SW8260D	0.750	2.15	21.54	1.1	76.5	44 - 142	19.3	9.22	35	
Styrene	18.1	μg/kg-dry	SW8260D	0.796	2.15	21.54	0	84.2	56 - 140	19.6	7.88	35	
Tetrachloroethene	28.1	μg/kg-dry	SW8260D	0.574	2.15	21.54	0	131	40 - 200	30.1	6.73	35	
Toluene	18.5	μg/kg-dry	SW8260D	0.659	2.15	21.54	4.57	64.9	54 - 132	20.4	9.46	35	
trans-1,2-Dichloroethene	15.4	μg/kg-dry	SW8260D	0.281	2.15	21.54	0	71.3	57 - 175	16.1	4.86	35	
trans-1,3-Dichloropropene	19.5	μg/kg-dry	SW8260D	0.367	2.15	21.54	0	90.3	66 - 117	19.8	1.67	35	
Trichloroethene	17.4	μg/kg-dry	SW8260D	0.420	2.15	21.54	0	80.6	61 - 143	18.5	6.50	35	
Trichlorofluoromethane	15.7	μg/kg-dry	SW8260D	0.254	2.15	21.54	0	73.0	10 - 140	16.5	4.70	35	
Vinyl chloride	13.8	μg/kg-dry	SW8260D	0.246	1.08	21.54	0	63.9	47 - 135	14.9	8.10	35	
Surr: 1,2-Dichloroethane-d4	54.6	μg/kg-dry	SW8260D			53.86		101	70 - 132				
Surr: 4-Bromofluorobenzene	56.4	μg/kg-dry	SW8260D			53.86		105	70 - 125				
Surr: Dibromofluoromethane	53.0	μg/kg-dry	SW8260D			53.86		98.3	70 - 133				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101481

Project: Forsey's Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101276-002CMSD Test Code: 8260D-S	Date Analyze	d: 01/25/202	1 934h										
Surr: Toluene-d8	56.4	μg/kg-dry	SW8260D			53.86		105	70 - 123				

Report Date: 1/26/2021 Page 29 of 29

5 Day Rush

American West Analytical Laboratories

Forsey's Cleaners Additional MW's / 1210017

REVISED: 1/21/20

Rpt Emailed:

UL

Page 1 of 1

Added a 5 day rush per client. -AR

WORK ORDER Summary Client:

APP100

Client ID:

Project:

Applied Geotechnical

Contact:

Joe DeGooyer

QC Level: Π + WO Type: Standard

Work Order: 2101481

Due Date: 1/27/2021

Level 2+ QC. 1/21/21: Added a 5 day rush per client. -AR; **Comments:** Sample ID **Client Sample ID Collected Date Received Date Test Code** Matrix Sel Storage 2101481-001A MW-6 @ 7' 1/20/2021 1100h 1/20/2021 1722h 8260D-S Soil Purge Test Group: 8260D-S-AWAL; # of Analytes: 53 / # of Surr: 4 **PMOIST** Purge 2101481-002A MW-6 @ 11' 1/20/2021 1110h 1/20/2021 1722h 8260D-S Soil Purge Test Group: 8260D-S-AWAL; # of Analytes: 53 / # of Surr: 4 **PMOIST** Purge 2101481-003A MW-7 @ 7.5' 1/20/2021 1157h 1/20/2021 1722h 8260D-S Soil Purge Test Group: 8260D-S-AWAL; # of Analytes: 53 / # of Surr: 4 **PMOIST** Purge 2101481-004A MW-8 @ 7.5' 1/20/2021 1238h 1/20/2021 1722h 8260D-S Soil Purge Test Group: 8260D-S-AWAL; # of Analytes: 53 / # of Surr: 4 **PMOIST** Purge 2101481-005A MW-9 @ 8.5' 1/20/2021 1336h 1/20/2021 1722h 8260D-S Soil Purge Test Group: 8260D-S-AWAL; # of Analytes: 53 / # of Surr: 4 **PMOIST** Purge 2101481-006A MW-10 @ 6.5' 1/20/2021 1430h 1/20/2021 1722h 8260D-S Soil Purge Test Group: 8260D-S-AWAL; # of Analytes: 53 / # of Surr: 4 **PMOIST** Purge

Printed: 1/25/2021	LABORATORY CHECK: %M []	RT []	CN 🗀	TAT [_]	QC 🔲	LUO [_]	HOK	нок	HOK	COC Emailed

American West Analytical Laboratories

210	481
AWAL	Lab Sample Set #

3440 S. 700 W. Salt Lake City, U Phone # (801) 263-8686 Toll Free # (All ar	nalysis								ported using AWAL's standard analyte lists and reporting Lustody and/or attached documentation.	AWAL Lab Sample Set # Page of
Fax # (801) 263-8687 Email awal@ www.awal-labs.com				1	QC L		3+			Around 7		Rush sets received after 4:00 pm are considered received on the next business day.	Due Date:
Client: Asplied Geolechnical E. Address: Cas w. Sandy Pkw Contact: Joe DeGooyer Phone #: 801-506 6399 Cell #: 8 E-mail: Joed @ Egec Inc. Com Project Name: Forsey's Cleaners Add. Project #: 1210017 PO #: Sampler Name: Joe De Gooyer Sample Site ID: Mw-6 e 7! Mw-9 e 7!/1' Mw-9 e 8!/1' Mw-10 e 6!/2'	1-queering 7 01-651-55		2 2 2 2 containers	Sample Matrix	(24) (26.)							Report down to the MDL Include EDD: Lab Filter for: Field Filtered For: For Compliance With: RCRA CWA SDWA ELAP/A2LA NLLAP Non-Compliance Other: Known Hazards & Sample Comments	Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due. Laboratory Use Only COC Tape Was: 1 Present on Outer Package Y N NA 2 Unbroken on Outer Package Y N NA 3 Present on Sample Y N 4 Unbroken on Sample Y N 5 Samples Were: 1 Shipped or hand delivered 2 Ambient or Chilled 3 Temperature 4 Received Intact Y N Checked at bench 6 Received Within Holding Times Y N
													Sample Labels and COC Record Match?
elinquished by: Jol De Googe rint Name: Joseph & Do Googe elinquished by: genature rint Name:	Time: S; ZZ Date: Time:	Print Name: 5 Received by: Signature Print Name:	r l Tan		- /	Hay	V	-0 -0.1	,	Date:	オミン	Special Instructions: ** CNEA+ added a ** N/21/20	a 5 day rush
elinquished by: gnature	Date: Time:	Received by: Signature								Date: Time:			

CHAIN OF CUSTODY

Joe DeGooyer **Applied Geotechnical** 600 West Sandy Parkway Sandy, UT 84070

TEL: (801) 566-6399

RE: Forseys Cleaners Additional MW's / 1210017

3440 South 700 West Salt Lake City, UT 84119 Dear Joe DeGooyer: Lab Set ID: 2101579

American West Analytical Laboratories received sample(s) on 1/22/2021 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forseys Cleaners Additional MW's / 1210017

Lab Sample ID: 2101579-001A

Client Sample ID: MW-6

Analytical Results

Collection Date: 1/22/2021 1220h **Received Date:** 1/22/2021 1700h

VOAs AWAL List by GC/MS Method 8260D/5030C

Test Code: 8260D-W

Analyzed: 1/25/2021 818h Extracted:

Units: $\mu g/L$ Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	#
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	
Acetone	67-64-1	10.0	< 10.0	
Benzene	71-43-2	2.00	< 2.00	
Bromochloromethane	74-97-5	2.00	< 2.00	
Bromodichloromethane	75-27-4	2.00	< 2.00	
Bromoform	75-25-2	2.00	< 2.00	
Bromomethane	74-83-9	5.00	< 5.00	
Carbon disulfide	75-15-0	2.00	< 2.00	#
Carbon tetrachloride	56-23-5	2.00	< 2.00	
Chlorobenzene	108-90-7	2.00	< 2.00	
Chloroethane	75-00-3	2.00	< 2.00	

Report Date: 1/27/2021 Page 2 of 37

Lab Sample ID: 2101579-001A **Client Sample ID:** MW-6

Analyzed: 1/25/2021 818h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

	- μg Ε						
American West	Compound				porting Limit	Analytical Result	Qual
	Chloroform		67	-66-3	2.00	< 2.00	
	Chloromethane		74	-87-3	3.00	< 3.00	
	cis-1,2-Dichloroethene		156	5-59-2	2.00	< 2.00	
	cis-1,3-Dichloropropene		1006	51-01-5	2.00	< 2.00	
3440 South 700 West	Cyclohexane		110)-82-7	2.00	< 2.00	#
Lake City, UT 84119	Dibromochloromethane		124	1-48-1	2.00	< 2.00	
	Dichlorodifluoromethane		75	-71-8	2.00	< 2.00	
	Ethylbenzene		100)-41-4	2.00	< 2.00	
Phone: (801) 263-8686	Isopropylbenzene		98	-82-8	2.00	< 2.00	
Free: (888) 263-8686	m,p-Xylene		1796	01-23-1	2.00	< 2.00	
Fax: (801) 263-8687	Methyl Acetate		79	-20-9	5.00	< 5.00	
ail: awal@awal-labs.com	Methyl tert-butyl ether		163	4-04-4	2.00	< 2.00	
an. uwur cuwur naos.com	Methylcyclohexane		108	3-87-2	2.00	< 2.00	#
b: www.awal-labs.com	Methylene chloride		75	-09-2	2.00	< 2.00	
	Naphthalene		91	-20-3	2.00	< 2.00	
	o-Xylene		95	-47-6	2.00	< 2.00	
Kyle F. Gross	Styrene		100)-42-5	2.00	< 2.00	
Laboratory Director	Tetrachloroethene				2.00	22.4	
	Toluene				2.00	< 2.00	
Jose Rocha	trans-1,2-Dichloroethene				2.00	< 2.00	
QA Officer	trans-1,3-Dichloropropene				2.00	< 2.00	
	Trichloroethene				2.00	< 2.00	
	Trichlorofluoromethane				2.00	< 2.00	
	Vinyl chloride				1.00	< 1.00	
	Surrogate Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dichloroethane-d4	17060-07-0	49.3	50.00	98.6	80-136	
	Surr: 4-Bromofluorobenzene	460-00-4	50.8	50.00	102	85-121	
	Surr: Dibromofluoromethane	1868-53-7	52.2	50.00	104	78-132	
	Surr: Toluene-d8	2037-26-5	52.2	50.00	104	81-123	

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forseys Cleaners Additional MW's / 1210017

 Lab Sample ID:
 2101579-002A

 Client Sample ID:
 MW-6 - Duplicate

 Collection Date:
 1/22/2021 1230h

 Received Date:
 1/22/2021 1700h

Analytical Results VOAs AWAL List by GC/MS Method 8260D/5030C

Analyzed: 1/25/2021 1347h **Extracted:**

Units: $\mu g/L$ Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	#
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	
Acetone	67-64-1	10.0	< 10.0	
Benzene	71-43-2	2.00	< 2.00	
Bromochloromethane	74-97-5	2.00	< 2.00	
Bromodichloromethane	75-27-4	2.00	< 2.00	
Bromoform	75-25-2	2.00	< 2.00	
Bromomethane	74-83-9	5.00	< 5.00	
Carbon disulfide	75-15-0	2.00	< 2.00	#
Carbon tetrachloride	56-23-5	2.00	< 2.00	
Chlorobenzene	108-90-7	2.00	< 2.00	
Chloroethane	75-00-3	2.00	< 2.00	

Report Date: 1/27/2021 Page 4 of 37

Test Code: 8260D-W

Lab Sample ID: 2101579-002A Client Sample ID: MW-6 - Duplicate

Analyzed: 1/25/2021 1347h **Extracted:**

Units: $\mu g/L$ **Dilution Factor:** 1 Method: SW8260D

	- μς		Diation I det	01. 1		1,1ctilou.	202002	
American West	Compound					porting Limit	Analytical Result	Qual
	Chloroform			67	'-66-3	2.00	< 2.00	
	Chlorometha	ne		74	l-87-3	3.00	< 3.00	
	cis-1,2-Dich	loroethene		150	6-59-2	2.00	< 2.00	
	cis-1,3-Dich	loropropene		100	61-01-5	2.00	< 2.00	
3440 South 700 West	Cyclohexane	:		110	0-82-7	2.00	< 2.00	#
lt Lake City, UT 84119	Dibromochlo	oromethane		124	4-48-1	2.00	< 2.00	
	Dichlorodifl	uoromethane		75	5-71-8	2.00	< 2.00	
	Ethylbenzen	e		100	0-41-4	2.00	< 2.00	
Phone: (801) 263-8686	Isopropylber	nzene		98	3-82-8	2.00	< 2.00	
oll Free: (888) 263-8686	m,p-Xylene			1796	501-23-1	2.00	< 2.00	
Fax: (801) 263-8687	Methyl Acet	ate		79	0-20-9	5.00	< 5.00	
mail: awal@awal-labs.com	Methyl tert-b	outyl ether		163	34-04-4	2.00	< 2.00	
	Methylcyclo	hexane		10	8-87-2	2.00	< 2.00	#
eb: www.awal-labs.com	Methylene cl	nloride		75	5-09-2	2.00	< 2.00	
	Naphthalene			91	-20-3	2.00	< 2.00	
	o-Xylene			95	5-47-6	2.00	< 2.00	
Kyle F. Gross	Styrene			100	0-42-5	2.00	< 2.00	
Laboratory Director	Tetrachloroe	thene		12	7-18-4	2.00	21.3	
	Toluene			10	8-88-3	2.00	< 2.00	
Jose Rocha	trans-1,2-Dio	chloroethene		150	6-60-5	2.00	< 2.00	
QA Officer	trans-1,3-Dio	chloropropene		1000	61-02-6	2.00	< 2.00	
	Trichloroeth	* *		79	0-01-6	2.00	< 2.00	
	Trichloroflu	oromethane		75	5-69-4	2.00	< 2.00	
	Vinyl chlorid	le		75	5-01-4	1.00	< 1.00	
	Surrogate	Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
	Surr: 1,2-Dic	hloroethane-d4	17060-07-0	49.6	50.00	99.2	80-136	
		ofluorobenzene	460-00-4	48.8	50.00	97.7	85-121	
	Surr: Dibrom Surr: Toluene	ofluoromethane	1868-53-7 2037-26-5	51.9 50.9	50.00 50.00	104 102	78-132 81-123	

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forseys Cleaners Additional MW's / 1210017

Lab Sample ID: 2101579-003A

Client Sample ID: MW-7

Collection Date: 1/22/2021 1340h **Received Date:** 1/22/2021 1700h

Analytical Results VOAs AWAL List by GC/MS Method 8260D/5030C

Analyzed: 1/26/2021 807h **Extracted:**

Units: μg/L Dilution Factor: 10 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Fax: (801) 263-8687

Toll Free: (888) 263-8686

CAS Reporting **Analytical** Compound Number Limit Result Qual Tetrachloroethene 127-18-4 20.0 204 Surrogate Units: $\mu g/L$ CAS Result **Amount Spiked** % REC Limits Oual Surr: 1,2-Dichloroethane-d4 17060-07-0 520 500.0 104 80-136 Surr: 4-Bromofluorobenzene 460-00-4 514 500.0 103 85-121 Surr: Dibromofluoromethane 1868-53-7 532 500.0 106 78-132 Surr: Toluene-d8 2037-26-5 521 500.0 104 81-123

~ - The reporting limits were raised due to high analyte concentrations.

web: www.awal-labs.com

e-mail: awal@awal-labs.com

Analyzed: 1/25/2021 1407h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	#
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	

Report Date: 1/27/2021 Page 6 of 37

Test Code: 8260D-W

Lab Sample ID: 2101579-003A **Client Sample ID:** MW-7

Analyzed: 1/25/2021 1407h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

	Units: µg/L	Dilution Factor:	1	Method:	SW8260D	
American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	4-Methyl-2-pentanone		108-10-1	5.00	< 5.00	
	Acetone		67-64-1	10.0	< 10.0	
	Benzene		71-43-2	2.00	< 2.00	
	Bromochloromethane		74-97-5	2.00	< 2.00	
3440 South 700 West	Bromodichloromethane		75-27-4	2.00	< 2.00	
Salt Lake City, UT 84119	Bromoform		75-25-2	2.00	< 2.00	
	Bromomethane		74-83-9	5.00	< 5.00	
	Carbon disulfide		75-15-0	2.00	< 2.00	#
Phone: (801) 263-8686	Carbon tetrachloride		56-23-5	2.00	< 2.00	
Toll Free: (888) 263-8686	Chlorobenzene		108-90-7	2.00	< 2.00	
Fax: (801) 263-8687	Chloroethane		75-00-3	2.00	< 2.00	
e-mail: awal@awal-labs.com	Chloroform		67-66-3	2.00	4.10	
	Chloromethane		74-87-3	3.00	< 3.00	
web: www.awal-labs.com	cis-1,2-Dichloroethene		156-59-2	2.00	< 2.00	
	cis-1,3-Dichloropropene		10061-01-5	2.00	< 2.00	
	Cyclohexane		110-82-7	2.00	< 2.00	#
Kyle F. Gross	Dibromochloromethane		124-48-1	2.00	< 2.00	
Laboratory Director	Dichlorodifluoromethane		75-71-8	2.00	< 2.00	
	Ethylbenzene		100-41-4	2.00	< 2.00	
Jose Rocha	Isopropylbenzene		98-82-8	2.00	< 2.00	
QA Officer	m,p-Xylene		179601-23-1	2.00	< 2.00	
	Methyl Acetate		79-20-9	5.00	< 5.00	
	Methyl tert-butyl ether		1634-04-4	2.00	< 2.00	
	Methylcyclohexane		108-87-2	2.00	< 2.00	#
	Methylene chloride		75-09-2	2.00	< 2.00	
	Naphthalene		91-20-3	2.00	< 2.00	
	o-Xylene		95-47-6	2.00	< 2.00	
	Styrene		100-42-5	2.00	< 2.00	
	Toluene		108-88-3	2.00	< 2.00	
	trans-1,2-Dichloroethene		156-60-5	2.00	< 2.00	
	trans-1,3-Dichloropropene		10061-02-6	2.00	< 2.00	
	Trichloroethene		79-01-6	2.00	< 2.00	
	Trichlorofluoromethane		75-69-4	2.00	< 2.00	
	Vinyl chloride		75-01-4	1.00	< 1.00	
	•					

Lab Sample ID: 2101579-003A

Client Sample ID: MW-7

Analyzed: 1/25/2021 1407h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

Surrogate	Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	hloroethane-d4	17060-07-0	50.8	50.00	102	80-136	
Surr: 4-Brom	ofluorobenzene	460-00-4	51.8	50.00	104	85-121	
Surr: Dibrom	ofluoromethane	1868-53-7	52.5	50.00	105	78-132	
Surr: Toluene	e-d8	2037-26-5	51.8	50.00	104	81-123	

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 1/27/2021 Page 8 of 37

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forseys Cleaners Additional MW's / 1210017

Lab Sample ID: 2101579-004A

Client Sample ID: MW-8

Analytical Results

Collection Date: 1/22/2021 1410h **Received Date:** 1/22/2021 1700h

VOAs AWAL List by GC/MS Method 8260D/5030C

Analyzed: 1/25/2021 1426h Extracted:

Units: $\mu g/L$ Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	#
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	
4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	
Acetone	67-64-1	10.0	< 10.0	
Benzene	71-43-2	2.00	< 2.00	
Bromochloromethane	74-97-5	2.00	< 2.00	
Bromodichloromethane	75-27-4	2.00	< 2.00	
Bromoform	75-25-2	2.00	< 2.00	
Bromomethane	74-83-9	5.00	< 5.00	
Carbon disulfide	75-15-0	2.00	< 2.00	#
Carbon tetrachloride	56-23-5	2.00	< 2.00	
Chlorobenzene	108-90-7	2.00	< 2.00	
Chloroethane	75-00-3	2.00	< 2.00	

Report Date: 1/27/2021 Page 9 of 37

Test Code: 8260D-W

Lab Sample ID: 2101579-004A **Client Sample ID:** MW-8

Analyzed: 1/25/2021 1426h Extracted:

Units: μg/L Dilution Factor: 1 Method: SW8260D

	emits: µg/L		Dilution 1 act	01. 1		111cmou. 5 11 02002		
erican West	Compound					porting Limit	Analytical Result	Qual
	Chloroform			67	-66-3	2.00	< 2.00	
	Chloromethan	ie		74	-87-3	3.00	< 3.00	
	cis-1,2-Dichlo	proethene		150	6-59-2	2.00	< 2.00	
	cis-1,3-Dichlo	propropene		1006	61-01-5	2.00	< 2.00	
South 700 West	Cyclohexane			110	0-82-7	2.00	< 2.00	#
City, UT 84119	Dibromochlor	omethane		124	4-48-1	2.00	< 2.00	
	Dichlorodifluo	oromethane		75	-71-8	2.00	< 2.00	
	Ethylbenzene			100	0-41-4	2.00	< 2.00	
e: (801) 263-8686	Isopropylbenz	zene		98	-82-8	2.00	< 2.00	
e: (888) 263-8686	m,p-Xylene			1796	01-23-1	2.00	< 2.00	
:: (801) 263-8687	Methyl Acetat	te		79	-20-9	5.00	< 5.00	
/al@awal-labs.com	Methyl tert-bu	ıtyl ether		163	4-04-4	2.00	< 2.00	
	Methylcycloho	exane		108	8-87-2	2.00	< 2.00	#
w.awal-labs.com	Methylene chl	loride		75	-09-2	2.00	< 2.00	
	Naphthalene			91	-20-3	2.00	< 2.00	
	o-Xylene			95	-47-6	2.00	< 2.00	
Kyle F. Gross	Styrene			100	0-42-5	2.00	< 2.00	
boratory Director	Tetrachloroeth	nene		127	7-18-4	2.00	37.2	
	Toluene			108	8-88-3	2.00	< 2.00	
Jose Rocha	trans-1,2-Dich	ıloroethene		150	6-60-5	2.00	< 2.00	
QA Officer	trans-1,3-Dich	ıloropropene		1006	61-02-6	2.00	< 2.00	
	Trichloroether	ne		79	-01-6	2.00	< 2.00	
	Trichlorofluor	romethane		75	-69-4	2.00	< 2.00	
	Vinyl chloride	;		75	-01-4	1.00	< 1.00	
	Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qua
	Surr: 1,2-Dichl		17060-07-0	50.2	50.00	100	80-136	
	Surr: 4-Bromot		460-00-4	50.2	50.00	100	85-121	
	Surr: Dibromot Surr: Toluene-o		1868-53-7 2037-26-5	51.8 51.0	50.00 50.00	104 102	78-132 81-123	

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Forseys Cleaners Additional MW's / 1210017 **Project:**

2101579-005A Lab Sample ID:

Client Sample ID: MW-9

Analytical Results

Collection Date: 1/22/2021 1505h **Received Date:** 1/22/2021 1700h

VOAs AWAL List by GC/MS Method 8260D/5030C

Test Code: 8260D-W

Analytical

Analyzed: 1/25/2021 1445h **Extracted:**

Units: µg/L **Dilution Factor:** 1 Method: SW8260D

3440 South 700 West

CAS Reporting Salt Lake City, UT 84119 Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com web: www.awal-labs.com Kyle F. Gross

Laboratory Director

Jose Rocha **QA** Officer

	Compound	Number	Limit	Result	Qual	
	1,1,1-Trichloroethane	71-55-6	2.00	< 2.00		
	1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00		
6	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00		
6	1,1,2-Trichloroethane	79-00-5	2.00	< 2.00		
7	1,1-Dichloroethane	75-34-3	2.00	< 2.00		
n	1,1-Dichloroethene	75-35-4	2.00	< 2.00	#	
n	1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00		
11	1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00		
	1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00		
S	1,2-Dibromoethane	106-93-4	2.00	< 2.00		
r	1,2-Dichlorobenzene	95-50-1	2.00	< 2.00		
	1,2-Dichloroethane	107-06-2	2.00	< 2.00		
a	1,2-Dichloropropane	78-87-5	2.00	< 2.00		
r	1,3-Dichlorobenzene	541-73-1	2.00	< 2.00		
	1,4-Dichlorobenzene	106-46-7	2.00	< 2.00		
	1,4-Dioxane	123-91-1	50.0	< 50.0		
	2-Butanone	78-93-3	10.0	< 10.0		
	2-Hexanone	591-78-6	5.00	< 5.00		
	4-Methyl-2-pentanone	108-10-1	5.00	< 5.00		
	Acetone	67-64-1	10.0	< 10.0		
	Benzene	71-43-2	2.00	< 2.00		
	Bromochloromethane	74-97-5	2.00	< 2.00		
	Bromodichloromethane	75-27-4	2.00	< 2.00		
	Bromoform	75-25-2	2.00	< 2.00		
	Bromomethane	74-83-9	5.00	< 5.00		
	Carbon disulfide	75-15-0	2.00	< 2.00	#	
	Carbon tetrachloride	56-23-5	2.00	< 2.00		
	Chlorobenzene	108-90-7	2.00	< 2.00		
	Chloroethane	75-00-3	2.00	< 2.00		

Lab Sample ID: 2101579-005A **Client Sample ID:** MW-9

Analyzed: 1/25/2021 1445h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

	Units: μg/	L	Dilution Fact	or: 1		Methou:	3 W 8200D	
American West	Compound					porting Limit	Analytical Result	Qual
	Chloroform			67	-66-3	2.00	< 2.00	
	Chlorometha	ine		74	-87-3	3.00	< 3.00	
	cis-1,2-Dich	loroethene		150	6-59-2	2.00	< 2.00	
	cis-1,3-Dich	loropropene		1000	61-01-5	2.00	< 2.00	
3440 South 700 West	Cyclohexane	;		110	0-82-7	2.00	< 2.00	#
Salt Lake City, UT 84119	Dibromochlo	promethane		124	4-48-1	2.00	< 2.00	
	Dichlorodifle	uoromethane		75	-71-8	2.00	< 2.00	
	Ethylbenzen	e		100	0-41-4	2.00	< 2.00	
Phone: (801) 263-8686	Isopropylber	nzene		98	-82-8	2.00	< 2.00	
Toll Free: (888) 263-8686	m,p-Xylene			1796	01-23-1	2.00	< 2.00	
Fax: (801) 263-8687	Methyl Acet	ate		79	-20-9	5.00	< 5.00	
e-mail: awal@awal-labs.com	Methyl tert-b	outyl ether		163	4-04-4	2.00	< 2.00	
	Methylcyclo	hexane		108	8-87-2	2.00	< 2.00	#
web: www.awal-labs.com	Methylene cl	hloride		75	-09-2	2.00	< 2.00	
	Naphthalene			91	-20-3	2.00	< 2.00	
	o-Xylene			95	-47-6	2.00	< 2.00	
Kyle F. Gross	Styrene			100	0-42-5	2.00	< 2.00	
Laboratory Director	Tetrachloroe	thene		127	7-18-4	2.00	< 2.00	
	Toluene			108	8-88-3	2.00	< 2.00	
Jose Rocha	trans-1,2-Dio	chloroethene		150	6-60-5	2.00	< 2.00	
QA Officer	trans-1,3-Dio	chloropropene		1006	61-02-6	2.00	< 2.00	
	Trichloroeth	ene		79	-01-6	2.00	< 2.00	
	Trichlorofluc	oromethane		75	-69-4	2.00	< 2.00	
	Vinyl chlorid	le		75	-01-4	1.00	< 1.00	
	Surrogate	Units: μg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
	· ·	hloroethane-d4	17060-07-0	50.3	50.00	101	80-136	
		ofluorobenzene ofluoromethane	460-00-4 1868-53-7	48.0 52.1	50.00 50.00	96.0 104	85-121 78-132	
	Surr: Toluene		2037-26-5	51.7	50.00	103	81-123	
	# - This compoi	und exceeded (high) the	control limit for the CO	CV. The data	is acceptable since	e the compound	was not detected t	in the

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forseys Cleaners Additional MW's / 1210017

Lab Sample ID: 2101579-006A

Client Sample ID: MW-10

Collection Date: 1/22/2021 1550h **Received Date:** 1/22/2021 1700h

Analytical Results VOAs AWAL List by GC/MS Method 8260D/5030C

Analyzed: 1/27/2021 703h Extracted:

Units: μg/L Dilution Factor: 10 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Fax: (801) 263-8687

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

CAS Reporting **Analytical** Compound Number Limit Result Qual Tetrachloroethene 127-18-4 20.0 226 Surrogate Units: $\mu g/L$ CAS Result **Amount Spiked** % REC Limits Oual Surr: 1,2-Dichloroethane-d4 17060-07-0 507 500.0 101 80-136 Surr: 4-Bromofluorobenzene 460-00-4 512 500.0 102 85-121 Surr: Dibromofluoromethane 1868-53-7 521 500.0 104 78-132 Surr: Toluene-d8 2037-26-5 510 500.0 102 81-123

~ - The reporting limits were raised due to high analyte concentrations.

web: www.awal-labs.com

Analyzed: 1/25/2021 1505h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,1-Dichloroethene	75-35-4	2.00	< 2.00	#
1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
1,4-Dioxane	123-91-1	50.0	< 50.0	
2-Butanone	78-93-3	10.0	< 10.0	
2-Hexanone	591-78-6	5.00	< 5.00	

Report Date: 1/27/2021 Page 13 of 37

Test Code: 8260D-W

Lab Sample ID: 2101579-006A Client Sample ID: MW-10

Analyzed: 1/25/2021 1505h **Extracted:**

Units: µg/L **Dilution Factor: 1** Method:

nerican West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual	
	4-Methyl-2-pentanone	108-10-1	5.00	< 5.00		
	Acetone	67-64-1	10.0	< 10.0		
	Benzene	71-43-2	2.00	< 2.00		
	Bromochloromethane	74-97-5	2.00	< 2.00		
440 South 700 West	Bromodichloromethane	75-27-4	2.00	< 2.00		
ake City, UT 84119	Bromoform	75-25-2	2.00	< 2.00		
	Bromomethane	74-83-9	5.00	< 5.00		
	Carbon disulfide	75-15-0	2.00	< 2.00	#	
one: (801) 263-8686	Carbon tetrachloride	56-23-5	2.00	< 2.00		
ree: (888) 263-8686	Chlorobenzene	108-90-7	2.00	< 2.00		
Fax: (801) 263-8687	Chloroethane	75-00-3	2.00	< 2.00		
awal@awal-labs.com	Chloroform	67-66-3	2.00	< 2.00		
	Chloromethane	74-87-3	3.00	< 3.00		
www.awal-labs.com	cis-1,2-Dichloroethene	156-59-2	2.00	< 2.00		
	cis-1,3-Dichloropropene	10061-01-5	2.00	< 2.00		
	Cyclohexane	110-82-7	2.00	< 2.00	#	
Kyle F. Gross	Dibromochloromethane	124-48-1	2.00	< 2.00		
Laboratory Director	Dichlorodifluoromethane	75-71-8	2.00	< 2.00		
	Ethylbenzene	100-41-4	2.00	< 2.00		
Jose Rocha	Isopropylbenzene	98-82-8	2.00	< 2.00		
QA Officer	m,p-Xylene	179601-23-1	2.00	< 2.00		
	Methyl Acetate	79-20-9	5.00	< 5.00		
	Methyl tert-butyl ether	1634-04-4	2.00	< 2.00		
	Methylcyclohexane	108-87-2	2.00	< 2.00	#	
	Methylene chloride	75-09-2	2.00	< 2.00		
	Naphthalene	91-20-3	2.00	< 2.00		
	o-Xylene	95-47-6	2.00	< 2.00		
	Styrene	100-42-5	2.00	< 2.00		
	Toluene	108-88-3	2.00	< 2.00		
	trans-1,2-Dichloroethene	156-60-5	2.00	< 2.00		
	trans-1,3-Dichloropropene	10061-02-6	2.00	< 2.00		
	Trichloroethene	79-01-6	2.00	12.7		
	Trichlorofluoromethane	75-69-4	2.00	< 2.00		

SW8260D

Lab Sample ID: 2101579-006A **Client Sample ID:** MW-10

Analyzed: 1/25/2021 1505h **Extracted:**

Units: μg/L Dilution Factor: 1 Method: SW8260D

Surrogate	Units: µg/L	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: 1,2-Dic	chloroethane-d4	17060-07-0	50.9	50.00	102	80-136	
Surr: 4-Brom	nofluorobenzene	460-00-4	48.8	50.00	97.5	85-121	
Surr: Dibrom	nofluoromethane	1868-53-7	52.5	50.00	105	78-132	
Surr: Toluene	e-d8	2037-26-5	50.5	50.00	101	81-123	

^{#-} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client: Applied Geotechnical Contact: Joe DeGooyer

Project: Forseys Cleaners Additional MW's / 1210017

Lab Sample ID: 2101579-007A **Client Sample ID:** Trip Blank

Collection Date: 1/22/2021 1700h **Received Date:** 1/22/2021 1700h

Analytical Results VOAs AWAL List by GC/MS Method 8260D/5030C

Analyzed: 1/26/2021 827h Extracted:

Units: μg/L Dilution Factor: 1 Method: SW8260D

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

1,1,1-Trichloroethane	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,1-Trichloroethane	71-55-6	2.00	< 2.00	
1,1,2-Trichloroethane 79-00-5 2.00 < 2.00	1,1,2,2-Tetrachloroethane	79-34-5	2.00	< 2.00	
1,1-Dichloroethane 75-34-3 2.00 < 2.00	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	2.00	< 2.00	
1,1-Dichloroethene 75-35-4 2.00 < 2.00	1,1,2-Trichloroethane	79-00-5	2.00	< 2.00	
1,2,3-Trichlorobenzene 87-61-6 2.00 < 2.00	1,1-Dichloroethane	75-34-3	2.00	< 2.00	
1,2,4-Trichlorobenzene 120-82-1 2.00 < 2.00	1,1-Dichloroethene	75-35-4	2.00	< 2.00	
1,2-Dibromo-3-chloropropane 96-12-8 5.00 < 5.00	1,2,3-Trichlorobenzene	87-61-6	2.00	< 2.00	
1,2-Dibromoethane 106-93-4 2.00 < 2.00	1,2,4-Trichlorobenzene	120-82-1	2.00	< 2.00	
1,2-Dichlorobenzene 95-50-1 2.00 < 2.00	1,2-Dibromo-3-chloropropane	96-12-8	5.00	< 5.00	
1,2-Dichloroethane 107-06-2 2.00 < 2.00	1,2-Dibromoethane	106-93-4	2.00	< 2.00	
1,2-Dichloropropane 78-87-5 2.00 < 2.00	1,2-Dichlorobenzene	95-50-1	2.00	< 2.00	
1,3-Dichlorobenzene 541-73-1 2.00 < 2.00	1,2-Dichloroethane	107-06-2	2.00	< 2.00	
1,4-Dichlorobenzene 106-46-7 2.00 < 2.00	1,2-Dichloropropane	78-87-5	2.00	< 2.00	
1,4-Dioxane 123-91-1 50.0 < 50.0	1,3-Dichlorobenzene	541-73-1	2.00	< 2.00	
2-Butanone 78-93-3 10.0 < 10.0	1,4-Dichlorobenzene	106-46-7	2.00	< 2.00	
2-Hexanone 591-78-6 5.00 < 5.00	1,4-Dioxane	123-91-1	50.0	< 50.0	\$
4-Methyl-2-pentanone 108-10-1 5.00 < 5.00	2-Butanone	78-93-3	10.0	< 10.0	
Acetone 67-64-1 10.0 < 10.0 \$ Benzene 71-43-2 2.00 < 2.00	2-Hexanone	591-78-6	5.00	< 5.00	\$
Benzene 71-43-2 2.00 < 2.00	4-Methyl-2-pentanone	108-10-1	5.00	< 5.00	
Bromochloromethane 74-97-5 2.00 < 2.00	Acetone	67-64-1	10.0	< 10.0	\$
Bromodichloromethane 75-27-4 2.00 < 2.00	Benzene	71-43-2	2.00	< 2.00	
Bromoform 75-25-2 2.00 < 2.00	Bromochloromethane	74-97-5	2.00	< 2.00	
Bromomethane 74-83-9 5.00 < 5.00	Bromodichloromethane	75-27-4	2.00	< 2.00	
Carbon disulfide 75-15-0 2.00 < 2.00 #	Bromoform	75-25-2	2.00	< 2.00	
	Bromomethane	74-83-9	5.00	< 5.00	
Carbon tetrachloride 56-23-5 2.00 < 2.00	Carbon disulfide	75-15-0	2.00	< 2.00	#
	Carbon tetrachloride	56-23-5	2.00	< 2.00	
Chlorobenzene 108-90-7 2.00 < 2.00	Chlorobenzene	108-90-7	2.00	< 2.00	
Chloroethane 75-00-3 2.00 < 2.00	Chloroethane	75-00-3	2.00	< 2.00	

Report Date: 1/27/2021 Page 16 of 37

Test Code: 8260D-W

Lab Sample ID: 2101579-007A Client Sample ID: Trip Blank

Analyzed: 1/26/2021 827h **Extracted:**

Units: $\mu g/L$ **Dilution Factor:** 1 Method: SW8260D

		18								
American West	Compound				CAS Romber	eporting Limit	Analytical Result	Qual		
	Chloroform			67	-66-3	2.00	< 2.00			
	Chloromethane			74	-87-3	3.00	< 3.00			
	cis-1,2-Dichloroe	thene		150	6-59-2	2.00	< 2.00			
	cis-1,3-Dichlorop	ropene		1000	61-01-5	2.00	< 2.00			
3440 South 700 West	Cyclohexane			110	0-82-7	2.00	< 2.00			
lt Lake City, UT 84119	Dibromochlorom	ethane		124	4-48-1	2.00	< 2.00			
	Dichlorodifluoro	methane		75	-71-8	2.00	< 2.00			
	Ethylbenzene			100	0-41-4	2.00	< 2.00			
Phone: (801) 263-8686	Isopropylbenzene	;		98	-82-8	2.00	< 2.00			
oll Free: (888) 263-8686	m,p-Xylene			1796	01-23-1	2.00	< 2.00			
Fax: (801) 263-8687	Methyl Acetate			79	-20-9	5.00	< 5.00			
nail: awal@awal-labs.com	Methyl tert-butyl	ether			4-04-4	2.00	< 2.00			
lan. awar@awar-iaus.com	Methylcyclohexa				8-87-2	2.00	< 2.00			
eb: www.awal-labs.com	Methylene chloric				-09-2	2.00	< 2.00			
	Naphthalene				-20-3	2.00	< 2.00			
	o-Xylene				-47-6	2.00	< 2.00			
Kyle F. Gross	Styrene				0-42-5	2.00	< 2.00			
Laboratory Director	Tetrachloroethen	e			7-18-4	2.00	< 2.00			
	Toluene				8-88-3	2.00	< 2.00			
Jose Rocha	trans-1,2-Dichlor	oethene			6-60-5	2.00	< 2.00			
QA Officer	trans-1,3-Dichlor				61-02-6	2.00	< 2.00			
	Trichloroethene	оргорене			-01-6	2.00	< 2.00			
	Trichlorofluorom	ethane			-69-4	2.00	< 2.00			
	Vinyl chloride	Ethane			-09-4	1.00	< 1.00			
	v myr emoriae				-01-4	1.00	\ 1.00			
	Surrogate U	Jnits: μg/L	CAS	Result	Amount Spike	d % REC	Limits	Qual		
	Surr: 1,2-Dichloroe		17060-07-0	50.9	50.00	102	80-136			
	Surr: 4-Bromofluor Surr: Dibromofluor		460-00-4 1868-53-7	47.4 52.6	50.00 50.00	94.8 105	85-121 78-132			
	Surr: Toluene-d8	omemane	2037-26-5	50.1	50.00	103	81-123			

^{# -} This compound exceeded (high) the control limit for the CCV. The data is acceptable since the compound was not detected in the sample.

^{\$ -} This compound exceeded (low) the control limit for the CCV. The compound concentration is estimated and may be biased low.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-1 012521A Test Code: 8260D-W	Date Analyzed:	01/25/20	21 726h										
1,1,1-Trichloroethane	20.1	μg/L	SW8260D	0.326	2.00	20.00	0	100	72 - 132				
1,1,2,2-Tetrachloroethane	18.7	μg/L	SW8260D	0.164	2.00	20.00	0	93.5	68 - 140				
1,1,2-Trichloro-1,2,2-trifluoroethane	20.5	μg/L	SW8260D	2.00	2.00	20.00	0	102	54 - 174				
1,1,2-Trichloroethane	20.1	μg/L	SW8260D	0.143	2.00	20.00	0	101	88 - 126				
1,1-Dichloroethane	20.6	μg/L	SW8260D	1.43	2.00	20.00	0	103	78 - 142				
1,1-Dichloroethene	22.4	μg/L	SW8260D	0.844	2.00	20.00	0	112	37 - 144				
1,2,3-Trichlorobenzene	18.4	μg/L	SW8260D	1.28	2.00	20.00	0	92.1	60 - 136				
1,2,4-Trichlorobenzene	18.5	μg/L	SW8260D	1.53	2.00	20.00	0	92.5	45 - 138				
1,2-Dibromo-3-chloropropane	16.5	μg/L	SW8260D	0.295	5.00	20.00	0	82.4	71 - 129				
1,2-Dibromoethane	19.8	μg/L	SW8260D	0.248	2.00	20.00	0	98.8	77 - 124				
1,2-Dichlorobenzene	19.6	μg/L	SW8260D	0.155	2.00	20.00	0	98.0	70 - 130				
1,2-Dichloroethane	19.2	μg/L	SW8260D	0.144	2.00	20.00	0	96.0	76 - 132				
1,2-Dichloropropane	19.6	μg/L	SW8260D	0.282	2.00	20.00	0	97.8	81 - 135				
1,3-Dichlorobenzene	20.0	μg/L	SW8260D	0.191	2.00	20.00	0	99.9	71 - 139				
1,4-Dichlorobenzene	19.6	μg/L	SW8260D	0.229	2.00	20.00	0	98.0	67 - 138				
1,4-Dioxane	115	μg/L	SW8260D	21.5	50.0	200.0	0	57.7	42 - 171				
2-Butanone	23.1	μg/L	SW8260D	1.22	10.0	20.00	0	116	69 - 236				
2-Hexanone	14.4	μg/L	SW8260D	0.225	5.00	20.00	0	71.8	51 - 167				
4-Methyl-2-pentanone	15.0	μg/L	SW8260D	0.296	5.00	20.00	0	75.0	68 - 128				
Acetone	21.2	$\mu g/L$	SW8260D	2.76	10.0	20.00	0	106	36 - 198				
Benzene	20.6	μg/L	SW8260D	0.147	2.00	20.00	0	103	78 - 125				
Bromochloromethane	20.0	μg/L	SW8260D	0.712	2.00	20.00	0	99.8	80 - 130				
Bromodichloromethane	19.0	μg/L	SW8260D	0.138	2.00	20.00	0	94.8	85 - 123				
Bromoform	18.3	μg/L	SW8260D	0.151	2.00	20.00	0	91.5	65 - 122				
Bromomethane	17.2	μg/L	SW8260D	3.08	5.00	20.00	0	86.2	10 - 168				
Carbon disulfide	24.1	μg/L	SW8260D	0.823	2.00	20.00	0	121	34 - 178				
Carbon tetrachloride	20.3	μg/L	SW8260D	0.859	2.00	20.00	0	101	66 - 143				
Chlorobenzene	20.5	μg/L	SW8260D	0.154	2.00	20.00	0	102	74 - 126				

Report Date: 1/27/2021 Page 18 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Applied Geotechnical **Client:**

Lab Set ID: 2101579

Forseys Cleaners Additional MW's / 1210017 **Project:**

Joe DeGooyer **Contact:**

MSVOA

Dept: QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS V		Date Analyzed:	01/25/20	21 726h										
Test Code: 8260D	-W													
Chloroethane		21.9	$\mu g/L$	SW8260D	1.37	2.00	20.00	0	109	45 - 154				
Chloroform		19.3	$\mu g/L$	SW8260D	0.166	2.00	20.00	0	96.3	74 - 120				
Chloromethane		17.1	$\mu g/L$	SW8260D	0.802	3.00	20.00	0	85.4	30 - 149				
cis-1,2-Dichloroethene		20.5	$\mu g/L$	SW8260D	0.188	2.00	20.00	0	103	70 - 132				
cis-1,3-Dichloropropene		19.9	$\mu g/L$	SW8260D	0.859	2.00	20.00	0	99.4	84 - 123				
Cyclohexane		16.9	$\mu g/L$	SW8260D	0.234	2.00	20.00	0	84.6	43 - 181				
Dibromochloromethane		19.2	$\mu g/L$	SW8260D	0.132	2.00	20.00	0	95.9	75 - 123				
Dichlorodifluoromethane		18.7	$\mu g/L$	SW8260D	0.430	2.00	20.00	0	93.6	10 - 165				
Ethylbenzene		20.7	$\mu g/L$	SW8260D	0.164	2.00	20.00	0	104	67 - 130				
Isopropylbenzene		20.5	$\mu g/L$	SW8260D	0.282	2.00	20.00	0	103	68 - 147				
m,p-Xylene		43.4	$\mu g/L$	SW8260D	0.575	2.00	40.00	0	108	69 - 142				
Methyl Acetate		24.8	$\mu g/L$	SW8260D	1.27	5.00	20.00	0	124	87 - 300				
Methyl tert-butyl ether		19.4	$\mu g/L$	SW8260D	1.60	2.00	20.00	0	97.2	58 - 135				
Methylcyclohexane		17.5	$\mu g/L$	SW8260D	0.569	2.00	20.00	0	87.3	55 - 151				
Methylene chloride		20.3	$\mu g/L$	SW8260D	0.381	2.00	20.00	0	101	65 - 154				
Naphthalene		16.0	$\mu g/L$	SW8260D	0.704	2.00	20.00	0	80.1	55 - 128				
o-Xylene		20.3	$\mu g/L$	SW8260D	0.153	2.00	20.00	0	102	70 - 142				
Styrene		18.7	$\mu g/L$	SW8260D	0.133	2.00	20.00	0	93.4	71 - 135				
Tetrachloroethene		21.7	$\mu g/L$	SW8260D	0.518	2.00	20.00	0	109	58 - 149				
Toluene		20.7	$\mu g/L$	SW8260D	0.285	2.00	20.00	0	103	69 - 129				
trans-1,2-Dichloroethene		21.6	$\mu g/L$	SW8260D	0.282	2.00	20.00	0	108	70 - 134				
trans-1,3-Dichloropropen	e	19.4	$\mu g/L$	SW8260D	0.772	2.00	20.00	0	97.1	63 - 132				
Trichloroethene		20.6	$\mu g/L$	SW8260D	0.180	2.00	20.00	0	103	72 - 136				
Trichlorofluoromethane		19.4	$\mu g/L$	SW8260D	0.375	2.00	20.00	0	97.3	59 - 152				
Vinyl chloride		19.3	$\mu g/L$	SW8260D	0.205	1.00	20.00	0	96.6	43 - 152				
Surr: 1,2-Dichloroethan	ne-d4	49.4	$\mu g/L$	SW8260D			50.00		98.8	80 - 136				
Surr: 4-Bromofluorobe	nzene	49.8	$\mu g/L$	SW8260D			50.00		99.7	85 - 121				
Surr: Dibromofluoromo	ethane	51.4	$\mu g/L$	SW8260D			50.00		103	78 - 132				

Report Date: 1/27/2021 Page 19 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-1 012521ATest Code:8260D-W	Date Analyzed:	01/25/20	21 726h										
Surr: Toluene-d8	52.0	μg/L	SW8260D			50.00		104	81 - 123				
Lab Sample ID:LCS VOC-1 012621ATest Code:8260D-W	Date Analyzed:	01/26/20	21 650h										
1,1,1-Trichloroethane	23.0	μg/L	SW8260D	0.326	2.00	20.00	0	115	72 - 132				
1,1,2,2-Tetrachloroethane	20.5	μg/L	SW8260D	0.164	2.00	20.00	0	103	68 - 140				
1,1,2-Trichloro-1,2,2-trifluoroethane	23.1	μg/L	SW8260D	2.00	2.00	20.00	0	116	54 - 174				
1,1,2-Trichloroethane	21.9	μg/L	SW8260D	0.143	2.00	20.00	0	109	88 - 126				
1,1-Dichloroethane	23.4	μg/L	SW8260D	1.43	2.00	20.00	0	117	78 - 142				
1,1-Dichloroethene	25.9	μg/L	SW8260D	0.844	2.00	20.00	0	129	37 - 144				
1,2,3-Trichlorobenzene	19.9	μg/L	SW8260D	1.28	2.00	20.00	0	99.4	60 - 136				
1,2,4-Trichlorobenzene	19.3	μg/L	SW8260D	1.53	2.00	20.00	0	96.5	45 - 138				
1,2-Dibromo-3-chloropropane	17.2	μg/L	SW8260D	0.295	5.00	20.00	0	86.2	71 - 129				
1,2-Dibromoethane	21.7	$\mu g/L$	SW8260D	0.248	2.00	20.00	0	108	77 - 124				
1,2-Dichlorobenzene	21.1	$\mu g/L$	SW8260D	0.155	2.00	20.00	0	106	70 - 130				
1,2-Dichloroethane	21.5	$\mu g/L$	SW8260D	0.144	2.00	20.00	0	108	76 - 132				
1,2-Dichloropropane	21.8	$\mu g/L$	SW8260D	0.282	2.00	20.00	0	109	81 - 135				
1,3-Dichlorobenzene	22.2	μg/L	SW8260D	0.191	2.00	20.00	0	111	71 - 139				
1,4-Dichlorobenzene	21.0	μg/L	SW8260D	0.229	2.00	20.00	0	105	67 - 138				
1,4-Dioxane	163	μg/L	SW8260D	21.5	50.0	200.0	0	81.7	42 - 171				
2-Butanone	24.5	$\mu g/L$	SW8260D	1.22	10.0	20.00	0	123	69 - 236				
2-Hexanone	15.0	$\mu g/L$	SW8260D	0.225	5.00	20.00	0	74.8	51 - 167				
4-Methyl-2-pentanone	16.6	$\mu g/L$	SW8260D	0.296	5.00	20.00	0	82.9	68 - 128				
Acetone	19.4	μg/L	SW8260D	2.76	10.0	20.00	0	97.0	36 - 198				
Benzene	22.7	μg/L	SW8260D	0.147	2.00	20.00	0	113	78 - 125				
Bromochloromethane	22.2	μg/L	SW8260D	0.712	2.00	20.00	0	111	80 - 130				
Bromodichloromethane	21.1	μg/L	SW8260D	0.138	2.00	20.00	0	106	85 - 123				
Bromoform	20.1	$\mu g/L$	SW8260D	0.151	2.00	20.00	0	100	65 - 122				

Report Date: 1/27/2021 Page 20 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:Applied GeotechnicalContact:Joe DeGooyerLab Set ID:2101579Dept:MSVOA

Project: Forseys Cleaners Additional MW's / 1210017 QC Type: LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: LCS VOC-1 012621A	Date Analyzed:	01/26/20	21 650h										
Test Code: 8260D-W													
Bromomethane	19.1	μg/L	SW8260D	3.08	5.00	20.00	0	95.7	10 - 168				
Carbon disulfide	27.7	μg/L	SW8260D	0.823	2.00	20.00	0	139	34 - 178				
Carbon tetrachloride	23.0	μg/L	SW8260D	0.859	2.00	20.00	0	115	66 - 143				
Chlorobenzene	22.7	μg/L	SW8260D	0.154	2.00	20.00	0	113	74 - 126				
Chloroethane	24.9	μg/L	SW8260D	1.37	2.00	20.00	0	125	45 - 154				
Chloroform	21.8	μg/L	SW8260D	0.166	2.00	20.00	0	109	74 - 120				
Chloromethane	19.4	μg/L	SW8260D	0.802	3.00	20.00	0	96.8	30 - 149				
cis-1,2-Dichloroethene	23.3	μg/L	SW8260D	0.188	2.00	20.00	0	116	70 - 132				
cis-1,3-Dichloropropene	22.3	μg/L	SW8260D	0.859	2.00	20.00	0	112	84 - 123				
Cyclohexane	19.8	μg/L	SW8260D	0.234	2.00	20.00	0	98.8	43 - 181				
Dibromochloromethane	21.1	μg/L	SW8260D	0.132	2.00	20.00	0	105	75 - 123				
Dichlorodifluoromethane	21.3	μg/L	SW8260D	0.430	2.00	20.00	0	106	10 - 165				
Ethylbenzene	23.2	μg/L	SW8260D	0.164	2.00	20.00	0	116	67 - 130				
Isopropylbenzene	22.9	μg/L	SW8260D	0.282	2.00	20.00	0	114	68 - 147				
m,p-Xylene	48.6	μg/L	SW8260D	0.575	2.00	40.00	0	122	69 - 142				
Methyl Acetate	27.3	μg/L	SW8260D	1.27	5.00	20.00	0	137	87 - 300				
Methyl tert-butyl ether	21.2	μg/L	SW8260D	1.60	2.00	20.00	0	106	58 - 135				
Methylcyclohexane	19.4	μg/L	SW8260D	0.569	2.00	20.00	0	97.2	55 - 151				
Methylene chloride	22.8	μg/L	SW8260D	0.381	2.00	20.00	0	114	65 - 154				
Naphthalene	17.1	μg/L	SW8260D	0.704	2.00	20.00	0	85.4	55 - 128				
o-Xylene	22.5	μg/L	SW8260D	0.153	2.00	20.00	0	113	70 - 142				
Styrene	20.7	μg/L	SW8260D	0.133	2.00	20.00	0	104	71 - 135				
Tetrachloroethene	24.0	μg/L	SW8260D	0.518	2.00	20.00	0	120	58 - 149				
Toluene	23.0	μg/L	SW8260D	0.285	2.00	20.00	0	115	69 - 129				
trans-1,2-Dichloroethene	25.2	μg/L	SW8260D	0.282	2.00	20.00	0	126	70 - 134				
trans-1,3-Dichloropropene	21.6	μg/L	SW8260D	0.772	2.00	20.00	0	108	63 - 132				
Trichloroethene	23.4	μg/L	SW8260D	0.180	2.00	20.00	0	117	72 - 136				
Trichlorofluoromethane	22.4	μg/L	SW8260D	0.375	2.00	20.00	0	112	59 - 152				

Report Date: 1/27/2021 Page 21 of 37

A

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** LCS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID:LCS VOC-1 012621ATest Code:8260D-W	Date Analyzed:	01/26/20	21 650h										
Vinyl chloride	22.2	μg/L	SW8260D	0.205	1.00	20.00	0	111	43 - 152				
Surr: 1,2-Dichloroethane-d4	48.9	$\mu g/L$	SW8260D			50.00		97.7	80 - 136				
Surr: 4-Bromofluorobenzene	46.9	$\mu g/L$	SW8260D			50.00		93.8	85 - 121				
Surr: Dibromofluoromethane	51.4	$\mu g/L$	SW8260D			50.00		103	78 - 132				
Surr: Toluene-d8	49.9	$\mu g/L$	SW8260D			50.00		99.7	81 - 123				
Lab Sample ID:LCS VOC-1 012721ATest Code:8260D-W	Date Analyzed:	01/27/20	21 605h										
Tetrachloroethene	23.3	μg/L	SW8260D	0.518	2.00	20.00	0	116	58 - 149				
Surr: 1,2-Dichloroethane-d4	48.5	μg/L	SW8260D			50.00		97.0	80 - 136				
Surr: 4-Bromofluorobenzene	46.7	μg/L	SW8260D			50.00		93.5	85 - 121				
Surr: Dibromofluoromethane	50.7	μg/L	SW8260D			50.00		101	78 - 132				
Surr: Toluene-d8	50.2	μg/L	SW8260D			50.00		100	81 - 123				

Report Date: 1/27/2021 Page 22 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
•	MB VOC-1 012521A 3260D-W	Date Analyzed:	01/25/202	1 745h										•
1,1,1-Trichloroethar	ne	< 2.00	μg/L	SW8260D	0.326	2.00								
1,1,2,2-Tetrachloroe	ethane	< 2.00	μg/L	SW8260D	0.164	2.00								
1,1,2-Trichloro-1,2,	,2-trifluoroethane	< 2.00	μg/L	SW8260D	2.00	2.00								
1,1,2-Trichloroethan	ne	< 2.00	μg/L	SW8260D	0.143	2.00								
1,1-Dichloroethane		< 2.00	μg/L	SW8260D	1.43	2.00								
1,1-Dichloroethene		< 2.00	μg/L	SW8260D	0.844	2.00								
1,2,3-Trichlorobenz	zene	< 2.00	μg/L	SW8260D	1.28	2.00								
1,2,4-Trichlorobenz	zene	< 2.00	μg/L	SW8260D	1.53	2.00								
1,2-Dibromo-3-chlo	oropropane	< 5.00	μg/L	SW8260D	0.295	5.00								
1,2-Dibromoethane		< 2.00	μg/L	SW8260D	0.248	2.00								
1,2-Dichlorobenzen	ie	< 2.00	μg/L	SW8260D	0.155	2.00								
1,2-Dichloroethane		< 2.00	μg/L	SW8260D	0.144	2.00								
1,2-Dichloropropan	e	< 2.00	μg/L	SW8260D	0.282	2.00								
1,3-Dichlorobenzen	ie	< 2.00	μg/L	SW8260D	0.191	2.00								
1,4-Dichlorobenzen	ie	< 2.00	μg/L	SW8260D	0.229	2.00								
1,4-Dioxane		< 50.0	μg/L	SW8260D	21.5	50.0								
2-Butanone		< 10.0	μg/L	SW8260D	1.22	10.0								
2-Hexanone		< 5.00	μg/L	SW8260D	0.225	5.00								
4-Methyl-2-pentano	one	< 5.00	μg/L	SW8260D	0.296	5.00								
Acetone		< 10.0	μg/L	SW8260D	2.76	10.0								
Benzene		< 2.00	μg/L	SW8260D	0.147	2.00								
Bromochloromethan	ne	< 2.00	μg/L	SW8260D	0.712	2.00								
Bromodichlorometh	nane	< 2.00	μg/L	SW8260D	0.138	2.00								
Bromoform		< 2.00	μg/L	SW8260D	0.151	2.00								
Bromomethane		< 5.00	$\mu g/L$	SW8260D	3.08	5.00								
Carbon disulfide		< 2.00	μg/L	SW8260D	0.823	2.00								
Carbon tetrachloride	e	< 2.00	μg/L	SW8260D	0.859	2.00								
Chlorobenzene		< 2.00	μg/L	SW8260D	0.154	2.00								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Jose Rocha **OA** Officer

OC SUMMARY REPORT

Client: Applied Geotechnical **Contact:** Joe DeGooyer Lab Set ID: 2101579

Forseys Cleaners Additional MW's / 1210017 **Project:**

Dept: **MSVOA**

QC Type: MBLK

Reporting RPD Ref. **RPD** Amount Spike Ref. MDL %REC Result Units Method Limits % RPD Limit Qual Analyte Limit Spiked Amt Amount Lab Sample ID: MB VOC-1 012521A Date Analyzed: 01/25/2021 745h Test Code: 8260D-W < 2.00 SW8260D 1.37 2.00 Chloroethane μg/L SW8260D Chloroform < 2.00 0.166 2.00 μg/L SW8260D Chloromethane < 3.00 μg/L 0.802 3.00 cis-1,2-Dichloroethene < 2.00 μg/L SW8260D 0.188 2.00 SW8260D cis-1,3-Dichloropropene < 2.00 0.859 2.00 μg/L $\mu g/L$ SW8260D Cyclohexane < 2.00 0.234 2.00 SW8260D Dibromochloromethane < 2.00 0.132 2.00 μg/L SW8260D Dichlorodifluoromethane < 2.00 μg/L 0.430 2.00 Ethylbenzene < 2.00 SW8260D 0.164 2.00 μg/L < 2.00 SW8260D 0.282 2.00 Isopropylbenzene μg/L SW8260D m,p-Xylene < 2.00 μg/L 0.575 2.00 SW8260D Methyl Acetate < 5.00 μg/L 1.27 5.00 SW8260D Methyl tert-butyl ether < 2.00μg/L 1.60 2.00 Methylcyclohexane < 2.00 μg/L SW8260D 0.569 2.00 SW8260D 2.00 Methylene chloride < 2.00 μg/L 0.381 Naphthalene < 2.00 SW8260D 0.704 2.00 μg/L < 2.00 SW8260D 2.00 o-Xylene μg/L 0.153 Styrene < 2.00 SW8260D 0.133 2.00 μg/L Tetrachloroethene < 2.00μg/L SW8260D 0.518 2.00 Toluene < 2.00 SW8260D 0.285 2.00 μg/L trans-1,2-Dichloroethene < 2.00μg/L SW8260D 0.282 2.00 SW8260D 0.772 2.00 trans-1,3-Dichloropropene < 2.00μg/L SW8260D 2.00 Trichloroethene < 2.00μg/L 0.180 Trichlorofluoromethane < 2.00 μg/L SW8260D 0.375 2.00 SW8260D Vinvl chloride < 1.00 μg/L 0.205 1.00 Surr: 1,2-Dichloroethane-d4 50.4 SW8260D 50.00 101 80 - 136 μg/L Surr: 4-Bromofluorobenzene 51.0 $\mu g/L$ SW8260D 50.00 102 85 - 121 Surr: Dibromofluoromethane 51.8 SW8260D 50.00 104 78 - 121 μg/L

Report Date: 1/27/2021 Page 24 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Applied Geotechnical **Client:**

Lab Set ID: 2101579

Forseys Cleaners Additional MW's / 1210017 **Project:**

Joe DeGooyer **Contact:**

Dept: **MSVOA**

QC Type: MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-1 012521A Test Code: 8260D-W	Date Analyzed:	01/25/20	21 745h										
Surr: Toluene-d8	51.6	μg/L	SW8260D			50.00		103	81 - 123				
Lab Sample ID:MB VOC-1 012621ATest Code:8260D-W	Date Analyzed:	01/26/20	21 709h										
1,1,1-Trichloroethane	< 2.00	μg/L	SW8260D	0.326	2.00								
1,1,2,2-Tetrachloroethane	< 2.00	μg/L	SW8260D	0.164	2.00								
1,1,2-Trichloro-1,2,2-trifluoroethane	< 2.00	μg/L	SW8260D	2.00	2.00								
1,1,2-Trichloroethane	< 2.00	μg/L	SW8260D	0.143	2.00								
1,1-Dichloroethane	< 2.00	μg/L	SW8260D	1.43	2.00								
1,1-Dichloroethene	< 2.00	μg/L	SW8260D	0.844	2.00								
1,2,3-Trichlorobenzene	< 2.00	μg/L	SW8260D	1.28	2.00								
1,2,4-Trichlorobenzene	< 2.00	μg/L	SW8260D	1.53	2.00								
1,2-Dibromo-3-chloropropane	< 5.00	μg/L	SW8260D	0.295	5.00								
1,2-Dibromoethane	< 2.00	$\mu g/L$	SW8260D	0.248	2.00								
1,2-Dichlorobenzene	< 2.00	$\mu g/L$	SW8260D	0.155	2.00								
1,2-Dichloroethane	< 2.00	$\mu g/L$	SW8260D	0.144	2.00								
1,2-Dichloropropane	< 2.00	$\mu g/L$	SW8260D	0.282	2.00								
1,3-Dichlorobenzene	< 2.00	$\mu g/L$	SW8260D	0.191	2.00								
1,4-Dichlorobenzene	< 2.00	$\mu g/L$	SW8260D	0.229	2.00								
1,4-Dioxane	< 50.0	μg/L	SW8260D	21.5	50.0								
2-Butanone	< 10.0	μg/L	SW8260D	1.22	10.0								
2-Hexanone	< 5.00	$\mu g/L$	SW8260D	0.225	5.00								
4-Methyl-2-pentanone	< 5.00	$\mu g/L$	SW8260D	0.296	5.00								
Acetone	< 10.0	μg/L	SW8260D	2.76	10.0								
Benzene	< 2.00	$\mu g/L$	SW8260D	0.147	2.00								
Bromochloromethane	< 2.00	$\mu g/L$	SW8260D	0.712	2.00								
Bromodichloromethane	< 2.00	$\mu g/L$	SW8260D	0.138	2.00								
Bromoform	< 2.00	μg/L	SW8260D	0.151	2.00								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

MSVOA

QC Type: MBLK

Dept:

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-1 012621A	Date Analyzed:	01/26/20	21 709h										
Test Code: 8260D-W													
Bromomethane	< 5.00	μg/L	SW8260D	3.08	5.00								
Carbon disulfide	< 2.00	$\mu g/L$	SW8260D	0.823	2.00								
Carbon tetrachloride	< 2.00	$\mu g/L$	SW8260D	0.859	2.00								
Chlorobenzene	< 2.00	μg/L	SW8260D	0.154	2.00								
Chloroethane	< 2.00	μg/L	SW8260D	1.37	2.00								
Chloroform	< 2.00	μg/L	SW8260D	0.166	2.00								
Chloromethane	< 3.00	μg/L	SW8260D	0.802	3.00								
cis-1,2-Dichloroethene	< 2.00	μg/L	SW8260D	0.188	2.00								
cis-1,3-Dichloropropene	< 2.00	μg/L	SW8260D	0.859	2.00								
Cyclohexane	< 2.00	μg/L	SW8260D	0.234	2.00								
Dibromochloromethane	< 2.00	μg/L	SW8260D	0.132	2.00								
Dichlorodifluoromethane	< 2.00	μg/L	SW8260D	0.430	2.00								
Ethylbenzene	< 2.00	μg/L	SW8260D	0.164	2.00								
Isopropylbenzene	< 2.00	μg/L	SW8260D	0.282	2.00								
m,p-Xylene	< 2.00	μg/L	SW8260D	0.575	2.00								
Methyl Acetate	< 5.00	μg/L	SW8260D	1.27	5.00								
Methyl tert-butyl ether	< 2.00	μg/L	SW8260D	1.60	2.00								
Methylcyclohexane	< 2.00	μg/L	SW8260D	0.569	2.00								
Methylene chloride	< 2.00	μg/L	SW8260D	0.381	2.00								
Naphthalene	< 2.00	μg/L	SW8260D	0.704	2.00								
o-Xylene	< 2.00	μg/L	SW8260D	0.153	2.00								
Styrene	< 2.00	μg/L	SW8260D	0.133	2.00								
Tetrachloroethene	< 2.00	μg/L	SW8260D	0.518	2.00								
Toluene	< 2.00	μg/L	SW8260D	0.285	2.00								
trans-1,2-Dichloroethene	< 2.00	μg/L	SW8260D	0.282	2.00								
trans-1,3-Dichloropropene	< 2.00	μg/L	SW8260D	0.772	2.00								
Trichloroethene	< 2.00	μg/L	SW8260D	0.180	2.00								
Trichlorofluoromethane	< 2.00	μg/L	SW8260D	0.375	2.00								

American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleane

Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MBLK

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: MB VOC-1 012621A Test Code: 8260D-W	Date Analyzed:	01/26/20	21 709h										
Vinyl chloride	< 1.00	μg/L	SW8260D	0.205	1.00								
Surr: 1,2-Dichloroethane-d4	50.2	μg/L	SW8260D			50.00		100	80 - 136				
Surr: 4-Bromofluorobenzene	50.1	μg/L	SW8260D			50.00		100	85 - 121				
Surr: Dibromofluoromethane	52.2	μg/L	SW8260D			50.00		104	78 - 121				
Surr: Toluene-d8	51.2	$\mu g/L$	SW8260D			50.00		102	81 - 123				
Lab Sample ID: MB VOC-1 012721A Test Code: 8260D-W	Date Analyzed:	01/27/20	21 624h										
Tetrachloroethene	< 2.00	μg/L	SW8260D	0.518	2.00								
Surr: 1,2-Dichloroethane-d4	49.8	μg/L	SW8260D			50.00		99.6	80 - 136				
Surr: 4-Bromofluorobenzene	49.8	$\mu g/L$	SW8260D			50.00		99.6	85 - 121				
Surr: Dibromofluoromethane	51.8	$\mu g/L$	SW8260D			50.00		104	78 - 121				
Surr: Toluene-d8	51.0	μg/L	SW8260D			50.00		102	81 - 123				

Report Date: 1/27/2021 Page 27 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:Applied GeotechnicalContact:Joe DeGooyerLab Set ID:2101579Dept:MSVOA

Project: Forseys Cleaners Additional MW's / 1210017 QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101579-001AMS Test Code: 8260D-W	Date Analyzed:	01/25/20	21 935h										
1,1,1-Trichloroethane	21.3	μg/L	SW8260D	0.326	2.00	20.00	0	107	72 - 132				
1,1,2,2-Tetrachloroethane	17.5	μg/L	SW8260D	0.164	2.00	20.00	0	87.6	68 - 140				
1,1,2-Trichloro-1,2,2-trifluoroethane	25.7	μg/L	SW8260D	2.00	2.00	20.00	0	128	54 - 174				
1,1,2-Trichloroethane	18.9	μg/L	SW8260D	0.143	2.00	20.00	0	94.6	88 - 126				
1,1-Dichloroethane	20.9	μg/L	SW8260D	1.43	2.00	20.00	0	105	78 - 142				
1,1-Dichloroethene	24.5	μg/L	SW8260D	0.844	2.00	20.00	0	123	37 - 144				
1,2,3-Trichlorobenzene	18.1	μg/L	SW8260D	1.28	2.00	20.00	0	90.4	60 - 136				
1,2,4-Trichlorobenzene	18.3	μg/L	SW8260D	1.53	2.00	20.00	0	91.4	45 - 138				
1,2-Dibromo-3-chloropropane	15.0	μg/L	SW8260D	0.295	5.00	20.00	0	74.8	71 - 129				
1,2-Dibromoethane	18.6	μg/L	SW8260D	0.248	2.00	20.00	0	92.8	77 - 124				
1,2-Dichlorobenzene	19.5	μg/L	SW8260D	0.155	2.00	20.00	0	97.3	70 - 130				
1,2-Dichloroethane	18.5	μg/L	SW8260D	0.144	2.00	20.00	0	92.7	76 - 132				
1,2-Dichloropropane	19.4	$\mu g/L$	SW8260D	0.282	2.00	20.00	0	97.0	81 - 135				
1,3-Dichlorobenzene	20.4	$\mu g/L$	SW8260D	0.191	2.00	20.00	0	102	71 - 139				
1,4-Dichlorobenzene	19.3	$\mu g/L$	SW8260D	0.229	2.00	20.00	0	96.6	67 - 138				
1,4-Dioxane	127	μg/L	SW8260D	21.5	50.0	200.0	0	63.3	42 - 171				
2-Butanone	21.6	$\mu g/L$	SW8260D	1.22	10.0	20.00	0	108	69 - 236				
2-Hexanone	13.1	$\mu g/L$	SW8260D	0.225	5.00	20.00	0	65.4	51 - 167				
4-Methyl-2-pentanone	14.3	$\mu g/L$	SW8260D	0.296	5.00	20.00	0	71.4	68 - 128				
Acetone	18.1	$\mu g/L$	SW8260D	2.76	10.0	20.00	0	90.4	36 - 198				
Benzene	21.6	$\mu g/L$	SW8260D	0.147	2.00	20.00	0	108	78 - 125				
Bromochloromethane	19.4	$\mu g/L$	SW8260D	0.712	2.00	20.00	0	97.0	80 - 130				
Bromodichloromethane	18.6	$\mu g/L$	SW8260D	0.138	2.00	20.00	0	93.0	85 - 123				
Bromoform	17.1	$\mu g/L$	SW8260D	0.151	2.00	20.00	0	85.5	65 - 122				
Bromomethane	17.0	$\mu g/L$	SW8260D	3.08	5.00	20.00	0	85.0	10 - 168				
Carbon disulfide	26.3	$\mu g/L$	SW8260D	0.823	2.00	20.00	0	131	34 - 178				
Carbon tetrachloride	21.2	$\mu g/L$	SW8260D	0.859	2.00	20.00	0	106	66 - 143				
Chlorobenzene	20.6	μg/L	SW8260D	0.154	2.00	20.00	0	103	74 - 126				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:Applied GeotechnicalContact:Joe DeGooyerLab Set ID:2101579Dept:MSVOA

Project: Forseys Cleaners Additional MW's / 1210017 QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101579-001AMS	Date Analyzed:	01/25/20	21 935h										
Test Code: 8260D-W													
Chloroethane	23.0	μg/L	SW8260D	1.37	2.00	20.00	0	115	45 - 154				
Chloroform	20.0	μg/L	SW8260D	0.166	2.00	20.00	0	99.8	74 - 120				
Chloromethane	18.2	μg/L	SW8260D	0.802	3.00	20.00	0	91.1	30 - 149				
cis-1,2-Dichloroethene	20.6	μg/L	SW8260D	0.188	2.00	20.00	0	103	70 - 132				
cis-1,3-Dichloropropene	18.9	μg/L	SW8260D	0.859	2.00	20.00	0	94.6	84 - 123				
Cyclohexane	21.7	μg/L	SW8260D	0.234	2.00	20.00	0	109	43 - 181				
Dibromochloromethane	18.2	μg/L	SW8260D	0.132	2.00	20.00	0	90.8	75 - 123				
Dichlorodifluoromethane	21.7	μg/L	SW8260D	0.430	2.00	20.00	0	108	10 - 165				
Ethylbenzene	21.4	μg/L	SW8260D	0.164	2.00	20.00	0	107	67 - 130				
Isopropylbenzene	21.3	μg/L	SW8260D	0.282	2.00	20.00	0	106	68 - 147				
m,p-Xylene	45.1	μg/L	SW8260D	0.575	2.00	40.00	0	113	69 - 142				
Methyl Acetate	25.4	μg/L	SW8260D	1.27	5.00	20.00	0	127	87 - 300				
Methyl tert-butyl ether	18.5	μg/L	SW8260D	1.60	2.00	20.00	0	92.4	58 - 135				
Methylcyclohexane	22.8	μg/L	SW8260D	0.569	2.00	20.00	0	114	55 - 151				
Methylene chloride	20.1	μg/L	SW8260D	0.381	2.00	20.00	0	101	65 - 154				
Naphthalene	15.4	μg/L	SW8260D	0.704	2.00	20.00	0	76.8	55 - 128				
o-Xylene	20.7	μg/L	SW8260D	0.153	2.00	20.00	0	104	70 - 142				
Styrene	18.7	μg/L	SW8260D	0.133	2.00	20.00	0	93.6	71 - 135				
Tetrachloroethene	44.6	μg/L	SW8260D	0.518	2.00	20.00	22.4	111	58 - 149				
Toluene	22.6	μg/L	SW8260D	0.285	2.00	20.00	1.01	108	69 - 129				
trans-1,2-Dichloroethene	23.0	μg/L	SW8260D	0.282	2.00	20.00	0	115	70 - 134				
trans-1,3-Dichloropropene	18.8	μg/L	SW8260D	0.772	2.00	20.00	0	94.2	63 - 132				
Trichloroethene	22.4	μg/L	SW8260D	0.180	2.00	20.00	0	112	72 - 136				
Trichlorofluoromethane	22.0	μg/L	SW8260D	0.375	2.00	20.00	0	110	59 - 152				
Vinyl chloride	21.2	μg/L	SW8260D	0.205	1.00	20.00	0	106	43 - 152				
Surr: 1,2-Dichloroethane-d4	47.2	μg/L	SW8260D			50.00		94.4	80 - 136				
Surr: 4-Bromofluorobenzene	49.1	μg/L	SW8260D			50.00		98.2	85 - 121				
Surr: Dibromofluoromethane	49.6	$\mu g/L$	SW8260D			50.00		99.2	78 - 132				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101579-001AMS Test Code: 8260D-W	Date Analyzed:	01/25/20	21 935h										
Surr: Toluene-d8	49.2	$\mu g/L$	SW8260D			50.00		98.5	81 - 123				
Lab Sample ID: 2101580-002AMS Test Code: 8260D-W	Date Analyzed:	01/26/20	21 846h										
1,1,1-Trichloroethane	221	μg/L	SW8260D	3.26	20.0	200.0	0	110	72 - 132				
1,1,2,2-Tetrachloroethane	193	μg/L	SW8260D	1.64	20.0	200.0	0	96.6	68 - 140				
1,1,2-Trichloro-1,2,2-trifluoroethane	255	μg/L	SW8260D	20.0	20.0	200.0	0	128	54 - 174				
1,1,2-Trichloroethane	204	μg/L	SW8260D	1.43	20.0	200.0	0	102	88 - 126				
1,1-Dichloroethane	219	μg/L	SW8260D	14.3	20.0	200.0	0	109	78 - 142				
1,1-Dichloroethene	249	μg/L	SW8260D	8.44	20.0	200.0	0	124	37 - 144				
1,2,3-Trichlorobenzene	187	μg/L	SW8260D	12.8	20.0	200.0	0	93.4	60 - 136				
1,2,4-Trichlorobenzene	187	$\mu g/L$	SW8260D	15.3	20.0	200.0	0	93.4	45 - 138				
1,2-Dibromo-3-chloropropane	168	$\mu g/L$	SW8260D	2.95	50.0	200.0	0	84.0	71 - 129				
1,2-Dibromoethane	198	$\mu g/L$	SW8260D	2.48	20.0	200.0	0	99.2	77 - 124				
1,2-Dichlorobenzene	202	$\mu g/L$	SW8260D	1.55	20.0	200.0	0	101	70 - 130				
1,2-Dichloroethane	205	$\mu g/L$	SW8260D	1.44	20.0	200.0	0	103	76 - 132				
1,2-Dichloropropane	203	$\mu g/L$	SW8260D	2.82	20.0	200.0	0	101	81 - 135				
1,3-Dichlorobenzene	212	$\mu g/L$	SW8260D	1.91	20.0	200.0	0	106	71 - 139				
1,4-Dichlorobenzene	201	$\mu g/L$	SW8260D	2.29	20.0	200.0	0	101	67 - 138				
1,4-Dioxane	1,500	$\mu g/L$	SW8260D	215	500	2,000	0	74.9	42 - 171				
2-Butanone	232	$\mu g/L$	SW8260D	12.2	100	200.0	0	116	69 - 236				
2-Hexanone	137	$\mu g/L$	SW8260D	2.25	50.0	200.0	0	68.4	51 - 167				
4-Methyl-2-pentanone	152	$\mu g/L$	SW8260D	2.96	50.0	200.0	0	76.2	68 - 128				
Acetone	186	$\mu g/L$	SW8260D	27.6	100	200.0	0	93.2	36 - 198				
Benzene	217	$\mu g/L$	SW8260D	1.47	20.0	200.0	0	109	78 - 125				
Bromochloromethane	212	$\mu g/L$	SW8260D	7.12	20.0	200.0	0	106	80 - 130				
Bromodichloromethane	200	$\mu g/L$	SW8260D	1.38	20.0	200.0	0	100	85 - 123				
Bromoform	191	$\mu g/L$	SW8260D	1.51	20.0	200.0	0	95.7	65 - 122				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:Applied GeotechnicalContact:Joe DeGooyerLab Set ID:2101579Dept:MSVOA

Project: Forseys Cleaners Additional MW's / 1210017 QC Type: MS

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101580-002AMS	Date Analyzed:	01/26/20	21 846h										
Test Code: 8260D-W													
Bromomethane	174	$\mu g/L$	SW8260D	30.8	50.0	200.0	0	87.1	10 - 168				
Carbon disulfide	265	$\mu g/L$	SW8260D	8.23	20.0	200.0	0	132	34 - 178				
Carbon tetrachloride	221	$\mu g/L$	SW8260D	8.59	20.0	200.0	0	110	66 - 143				
Chlorobenzene	214	μg/L	SW8260D	1.54	20.0	200.0	0	107	74 - 126				
Chloroethane	223	μg/L	SW8260D	13.7	20.0	200.0	0	112	45 - 154				
Chloroform	207	μg/L	SW8260D	1.66	20.0	200.0	0	103	74 - 120				
Chloromethane	178	μg/L	SW8260D	8.02	30.0	200.0	0	89.2	30 - 149				
cis-1,2-Dichloroethene	213	μg/L	SW8260D	1.88	20.0	200.0	0	107	70 - 132				
cis-1,3-Dichloropropene	207	μg/L	SW8260D	8.59	20.0	200.0	0	104	84 - 123				
Cyclohexane	198	μg/L	SW8260D	2.34	20.0	200.0	0	98.9	43 - 181				
Dibromochloromethane	196	μg/L	SW8260D	1.32	20.0	200.0	0	98.1	75 - 123				
Dichlorodifluoromethane	204	μg/L	SW8260D	4.30	20.0	200.0	0	102	10 - 165				
Ethylbenzene	220	μg/L	SW8260D	1.64	20.0	200.0	0	110	67 - 130				
Isopropylbenzene	216	μg/L	SW8260D	2.82	20.0	200.0	0	108	68 - 147				
m,p-Xylene	462	μg/L	SW8260D	5.75	20.0	400.0	0	116	69 - 142				
Methyl Acetate	285	μg/L	SW8260D	12.7	50.0	200.0	0	143	87 - 300				
Methyl tert-butyl ether	200	μg/L	SW8260D	16.0	20.0	200.0	0	100	58 - 135				
Methylcyclohexane	213	μg/L	SW8260D	5.69	20.0	200.0	0	106	55 - 151				
Methylene chloride	216	μg/L	SW8260D	3.81	20.0	200.0	0	108	65 - 154				
Naphthalene	162	μg/L	SW8260D	7.04	20.0	200.0	0	81.0	55 - 128				
o-Xylene	210	μg/L	SW8260D	1.53	20.0	200.0	0	105	70 - 142				
Styrene	194	μg/L	SW8260D	1.33	20.0	200.0	0	96.9	71 - 135				
Tetrachloroethene	238	μg/L	SW8260D	5.18	20.0	200.0	0	119	58 - 149				
Toluene	219	μg/L	SW8260D	2.85	20.0	200.0	0	110	69 - 129				
trans-1,2-Dichloroethene	236	μg/L	SW8260D	2.82	20.0	200.0	0	118	70 - 134				
trans-1,3-Dichloropropene	203	μg/L	SW8260D	7.72	20.0	200.0	0	102	63 - 132				
Trichloroethene	224	μg/L	SW8260D	1.80	20.0	200.0	0	112	72 - 136				
Trichlorofluoromethane	217	μg/L	SW8260D	3.75	20.0	200.0	0	108	59 - 152				

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Salt Lake City, UT 84119

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross **Laboratory Director**

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Applied Geotechnical Joe DeGooyer **Client: Contact: Lab Set ID:** 2101579 Dept: **MSVOA**

Forseys Cleaners Additional MW's / 1210017 QC Type: MS **Project:**

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101580-002AMS Test Code: 8260D-W	Date Analyzed:	01/26/202	21 846h										
Vinyl chloride	205	μg/L	SW8260D	2.05	10.0	200.0	0	103	43 - 152				
Surr: 1,2-Dichloroethane-d4	486	$\mu g/L$	SW8260D			500.0		97.2	80 - 136				
Surr: 4-Bromofluorobenzene	479	μg/L	SW8260D			500.0		95.7	85 - 121				
Surr: Dibromofluoromethane	513	μg/L	SW8260D			500.0		103	78 - 132				
Surr: Toluene-d8	499	$\mu g/L$	SW8260D			500.0		99.8	81 - 123				
Lab Sample ID: 2101641-001AMS Test Code: 8260D-W	Date Analyzed:	01/27/202	21 827h										
Tetrachloroethene	2,510	μg/L	SW8260D	51.8	200	2,000	0	126	58 - 149				
Surr: 1,2-Dichloroethane-d4	4,760	μg/L	SW8260D			5,000		95.2	80 - 136				
Surr: 4-Bromofluorobenzene	5,000	μg/L	SW8260D			5,000		100	85 - 121				
Surr: Dibromofluoromethane	4,980	μg/L	SW8260D			5,000		99.5	78 - 132				
Surr: Toluene-d8	5,020	$\mu g/L$	SW8260D			5,000		100	81 - 123				

Report Date: 1/27/2021 Page 32 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA **QC Type:** MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101579-001AMSD Test Code: 8260D-W	Date Analyzed:	01/25/20	21 955h										
1,1,1-Trichloroethane	22.2	μg/L	SW8260D	0.326	2.00	20.00	0	111	72 - 132	21.3	4.18	35	
1,1,2,2-Tetrachloroethane	18.9	$\mu g/L$	SW8260D	0.164	2.00	20.00	0	94.4	68 - 140	17.5	7.47	35	
1,1,2-Trichloro-1,2,2-trifluoroethane	26.1	$\mu g/L$	SW8260D	2.00	2.00	20.00	0	130	54 - 174	25.7	1.43	35	
1,1,2-Trichloroethane	20.2	$\mu g/L$	SW8260D	0.143	2.00	20.00	0	101	88 - 126	18.9	6.70	35	
1,1-Dichloroethane	22.0	$\mu g/L$	SW8260D	1.43	2.00	20.00	0	110	78 - 142	20.9	4.85	35	
1,1-Dichloroethene	25.5	$\mu g/L$	SW8260D	0.844	2.00	20.00	0	127	37 - 144	24.5	3.76	35	
1,2,3-Trichlorobenzene	19.6	$\mu g/L$	SW8260D	1.28	2.00	20.00	0	97.9	60 - 136	18.1	7.97	35	
1,2,4-Trichlorobenzene	20.0	$\mu g/L$	SW8260D	1.53	2.00	20.00	0	100	45 - 138	18.3	9.09	35	
1,2-Dibromo-3-chloropropane	17.0	$\mu g/L$	SW8260D	0.295	5.00	20.00	0	84.8	71 - 129	15	12.5	35	
1,2-Dibromoethane	19.9	$\mu g/L$	SW8260D	0.248	2.00	20.00	0	99.7	77 - 124	18.6	7.12	35	
1,2-Dichlorobenzene	21.1	$\mu g/L$	SW8260D	0.155	2.00	20.00	0	106	70 - 130	19.5	8.09	35	
1,2-Dichloroethane	19.6	$\mu g/L$	SW8260D	0.144	2.00	20.00	0	98.0	76 - 132	18.5	5.61	35	
1,2-Dichloropropane	20.6	$\mu g/L$	SW8260D	0.282	2.00	20.00	0	103	81 - 135	19.4	6.00	35	
1,3-Dichlorobenzene	22.0	$\mu g/L$	SW8260D	0.191	2.00	20.00	0	110	71 - 139	20.5	7.53	35	
1,4-Dichlorobenzene	20.8	$\mu g/L$	SW8260D	0.229	2.00	20.00	0	104	67 - 138	19.3	7.48	35	
1,4-Dioxane	123	$\mu g/L$	SW8260D	21.5	50.0	200.0	0	61.5	42 - 171	127	2.91	35	
2-Butanone	24.0	$\mu g/L$	SW8260D	1.22	10.0	20.00	0	120	69 - 236	21.7	10.3	35	
2-Hexanone	14.0	$\mu g/L$	SW8260D	0.225	5.00	20.00	0	69.8	51 - 167	13.1	6.59	35	
4-Methyl-2-pentanone	15.5	$\mu g/L$	SW8260D	0.296	5.00	20.00	0	77.7	68 - 128	14.3	8.52	35	
Acetone	18.6	$\mu g/L$	SW8260D	2.76	10.0	20.00	0	92.8	36 - 198	18.1	2.57	35	
Benzene	22.5	$\mu g/L$	SW8260D	0.147	2.00	20.00	0	112	78 - 125	21.6	3.72	35	
Bromochloromethane	20.7	$\mu g/L$	SW8260D	0.712	2.00	20.00	0	104	80 - 130	19.4	6.53	35	
Bromodichloromethane	19.7	$\mu g/L$	SW8260D	0.138	2.00	20.00	0	98.4	85 - 123	18.6	5.64	35	
Bromoform	18.4	$\mu g/L$	SW8260D	0.151	2.00	20.00	0	92.1	65 - 122	17.1	7.43	35	
Bromomethane	17.8	$\mu g/L$	SW8260D	3.08	5.00	20.00	0	89.2	10 - 168	17	4.88	35	
Carbon disulfide	27.6	$\mu g/L$	SW8260D	0.823	2.00	20.00	0	138	34 - 178	26.3	4.79	35	
Carbon tetrachloride	22.3	$\mu g/L$	SW8260D	0.859	2.00	20.00	0	111	66 - 143	21.2	5.01	35	
Chlorobenzene	21.7	$\mu g/L$	SW8260D	0.154	2.00	20.00	0	108	74 - 126	20.6	5.40	35	

Report Date: 1/27/2021 Page 33 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Clean

Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MSD

RPD Ref. **RPD** Reporting Amount Spike Ref. MDL Units Method %REC Limits % RPD Qual Analyte Result Limit Spiked Amt Limit Amount Lab Sample ID: 2101579-001AMSD Date Analyzed: 01/25/2021 955h Test Code: 8260D-W SW8260D 1.37 Chloroethane 23.2 2.00 20.00 0 45 - 154 23 0.867 35 μg/L 116 SW8260D Chloroform 20.7 0.166 2.00 20.00 0 104 74 - 12020 3.83 35 μg/L SW8260D Chloromethane 18.9 μg/L 0.802 3.00 20.00 0 94.6 30 - 149 18.2 3.72 35 cis-1,2-Dichloroethene 21.8 μg/L SW8260D 0.188 2.00 20.00 0 109 70 - 13220.6 5.43 35 SW8260D 19.9 0.859 2.00 20.00 0 99.3 84 - 123 18.9 4.90 35 cis-1,3-Dichloropropene μg/L Cyclohexane 22.1 SW8260D 0.234 2.00 20.00 0 111 43 - 18121.7 1.87 35 μg/L SW8260D 19.7 2.00 0 98.4 75 - 12318.2 7.98 35 Dibromochloromethane μg/L 0.132 20.00 SW8260D Dichlorodifluoromethane 22.4 μg/L 0.430 2.00 20.00 0 112 10 - 165 21.7 3.00 35 22.4 SW8260D 2.00 20.00 0 21.4 4.30 35 Ethylbenzene μg/L 0.164 112 67 - 130 SW8260D 0.282 0 35 22.4 2.00 20.00 112 68 - 147 21.3 4.81 Isopropylbenzene μg/L SW8260D m,p-Xylene 47.6 μg/L 0.575 2.00 40.00 0 119 69 - 142 45.1 5.33 35 SW8260D 35 Methyl Acetate 26.4 1.27 5.00 20.00 0 132 87 - 30025.4 3.79 μg/L 35 Methyl tert-butyl ether 19.9 μg/L SW8260D 1.60 2.00 20.00 0 99.7 58 - 135 18.5 7.55 Methylcyclohexane 22.9 μg/L SW8260D 0.569 2.00 20.00 0 114 55 - 151 22.8 0.570 35 SW8260D 3.94 35 Methylene chloride 20.9 μg/L 0.381 2.00 20.00 0 105 65 - 154 20.1 SW8260D 0.704 2.00 20.00 0 86.2 55 - 128 35 Naphthalene 17.2 μg/L 15.4 11.6 22.1 SW8260D 20.00 20.7 35 o-Xylene μg/L 0.153 2.00 0 110 70 - 142 6.30 19.7 SW8260D 0.133 2.00 20.00 0 98.3 71 - 135 18.7 4.85 35 Styrene μg/L Tetrachloroethene 47.2 μg/L SW8260D 0.518 2.00 20.00 22.4 124 58 - 149 44.6 5.70 35 Toluene 23.6 SW8260D 0.285 2.00 20.00 1.01 69 - 129 22.6 4.29 35 μg/L 113 trans-1,2-Dichloroethene 24.0 μg/L SW8260D 0.282 2.00 20.00 0 120 70 - 13423 4.17 35 SW8260D 0.772 2.00 0 99.9 trans-1,3-Dichloropropene 20.0 μg/L 20.00 63 - 13218.8 5.87 35 72 - 136 Trichloroethene 23.4 μg/L SW8260D 0.180 2.00 20.00 0 117 22.4 4.19 35 Trichlorofluoromethane 22.4 μg/L SW8260D 0.375 2.00 20.00 0 112 59 - 152 22 1.49 35 SW8260D Vinvl chloride 22.4 μg/L 0.205 1.00 20.00 0 112 43 - 152 21.2 5.41 35 48.5 SW8260D 50.00 97.0 80 - 136 Surr: 1,2-Dichloroethane-d4 μg/L Surr: 4-Bromofluorobenzene 51.0 μg/L SW8260D 50.00 102 85 - 121 Surr: Dibromofluoromethane 50.6 SW8260D 50.00 78 - 132 μg/L 101

Report Date: 1/27/2021 Page 34 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer
Dept: MSVOA

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101579-001AMSD Test Code: 8260D-W	Date Analyzed:	01/25/20	21 955h										
Surr: Toluene-d8	50.5	μg/L	SW8260D			50.00		101	81 - 123				
Lab Sample ID: 2101580-002AMSD Test Code: 8260D-W	Date Analyzed:	01/26/20	21 905h										
1,1,1-Trichloroethane	228	μg/L	SW8260D	3.26	20.0	200.0	0	114	72 - 132	221	3.08	35	
1,1,2,2-Tetrachloroethane	202	μg/L	SW8260D	1.64	20.0	200.0	0	101	68 - 140	193	4.31	35	
1,1,2-Trichloro-1,2,2-trifluoroethane	266	μg/L	SW8260D	20.0	20.0	200.0	0	133	54 - 174	255	3.96	35	
1,1,2-Trichloroethane	210	μg/L	SW8260D	1.43	20.0	200.0	0	105	88 - 126	204	2.61	35	
1,1-Dichloroethane	228	μg/L	SW8260D	14.3	20.0	200.0	0	114	78 - 142	219	4.07	35	
1,1-Dichloroethene	261	μg/L	SW8260D	8.44	20.0	200.0	0	131	37 - 144	249	4.86	35	
1,2,3-Trichlorobenzene	198	μg/L	SW8260D	12.8	20.0	200.0	0	98.8	60 - 136	187	5.57	35	
1,2,4-Trichlorobenzene	194	μg/L	SW8260D	15.3	20.0	200.0	0	96.9	45 - 138	187	3.73	35	
1,2-Dibromo-3-chloropropane	174	μg/L	SW8260D	2.95	50.0	200.0	0	87.2	71 - 129	168	3.74	35	
1,2-Dibromoethane	207	μg/L	SW8260D	2.48	20.0	200.0	0	104	77 - 124	199	4.39	35	
1,2-Dichlorobenzene	209	μg/L	SW8260D	1.55	20.0	200.0	0	105	70 - 130	202	3.65	35	
1,2-Dichloroethane	208	μg/L	SW8260D	1.44	20.0	200.0	0	104	76 - 132	205	1.26	35	
1,2-Dichloropropane	213	μg/L	SW8260D	2.82	20.0	200.0	0	106	81 - 135	203	4.72	35	
1,3-Dichlorobenzene	217	μg/L	SW8260D	1.91	20.0	200.0	0	108	71 - 139	212	2.38	35	
1,4-Dichlorobenzene	210	μg/L	SW8260D	2.29	20.0	200.0	0	105	67 - 138	201	4.23	35	
1,4-Dioxane	1,670	μg/L	SW8260D	215	500	2,000	0	83.7	42 - 171	1500	11.1	35	
2-Butanone	246	μg/L	SW8260D	12.2	100	200.0	0	123	69 - 236	232	5.97	35	
2-Hexanone	146	μg/L	SW8260D	2.25	50.0	200.0	0	73.2	51 - 167	137	6.71	35	
4-Methyl-2-pentanone	161	μg/L	SW8260D	2.96	50.0	200.0	0	80.3	68 - 128	152	5.31	35	
Acetone	193	μg/L	SW8260D	27.6	100	200.0	0	96.5	36 - 198	186	3.43	35	
Benzene	225	$\mu g/L$	SW8260D	1.47	20.0	200.0	0	113	78 - 125	217	3.62	35	
Bromochloromethane	220	$\mu g/L$	SW8260D	7.12	20.0	200.0	0	110	80 - 130	212	4.03	35	
Bromodichloromethane	206	$\mu g/L$	SW8260D	1.38	20.0	200.0	0	103	85 - 123	200	2.76	35	
Bromoform	198	μg/L	SW8260D	1.51	20.0	200.0	0	99.2	65 - 122	191	3.54	35	

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101580-002AMSD	Date Analyzed:	01/26/20	21 905h										
Test Code: 8260D-W													
Bromomethane	175	μg/L	SW8260D	30.8	50.0	200.0	0	87.7	10 - 168	174	0.686	35	
Carbon disulfide	277	μg/L	SW8260D	8.23	20.0	200.0	0	139	34 - 178	265	4.57	35	
Carbon tetrachloride	228	μg/L	SW8260D	8.59	20.0	200.0	0	114	66 - 143	221	3.43	35	
Chlorobenzene	221	μg/L	SW8260D	1.54	20.0	200.0	0	110	74 - 126	214	3.03	35	
Chloroethane	239	μg/L	SW8260D	13.7	20.0	200.0	0	119	45 - 154	223	6.76	35	
Chloroform	214	μg/L	SW8260D	1.66	20.0	200.0	0	107	74 - 120	207	3.75	35	
Chloromethane	186	μg/L	SW8260D	8.02	30.0	200.0	0	93.1	30 - 149	178	4.28	35	
cis-1,2-Dichloroethene	229	μg/L	SW8260D	1.88	20.0	200.0	0	115	70 - 132	213	7.19	35	
cis-1,3-Dichloropropene	214	μg/L	SW8260D	8.59	20.0	200.0	0	107	84 - 123	207	3.13	35	
Cyclohexane	208	μg/L	SW8260D	2.34	20.0	200.0	0	104	43 - 181	198	4.79	35	
Dibromochloromethane	205	μg/L	SW8260D	1.32	20.0	200.0	0	102	75 - 123	196	4.19	35	
Dichlorodifluoromethane	217	μg/L	SW8260D	4.30	20.0	200.0	0	109	10 - 165	204	6.51	35	
Ethylbenzene	227	μg/L	SW8260D	1.64	20.0	200.0	0	113	67 - 130	220	3.27	35	
Isopropylbenzene	224	μg/L	SW8260D	2.82	20.0	200.0	0	112	68 - 147	217	3.45	35	
m,p-Xylene	478	μg/L	SW8260D	5.75	20.0	400.0	0	119	69 - 142	462	3.34	35	
Methyl Acetate	295	μg/L	SW8260D	12.7	50.0	200.0	0	147	87 - 300	285	3.28	35	
Methyl tert-butyl ether	206	μg/L	SW8260D	16.0	20.0	200.0	0	103	58 - 135	200	2.96	35	
Methylcyclohexane	223	μg/L	SW8260D	5.69	20.0	200.0	0	111	55 - 151	213	4.45	35	
Methylene chloride	221	μg/L	SW8260D	3.81	20.0	200.0	0	111	65 - 154	217	2.15	35	
Naphthalene	170	μg/L	SW8260D	7.04	20.0	200.0	0	85.2	55 - 128	162	5.00	35	
o-Xylene	220	μg/L	SW8260D	1.53	20.0	200.0	0	110	70 - 142	210	4.60	35	
Styrene	200	μg/L	SW8260D	1.33	20.0	200.0	0	100	71 - 135	194	3.20	35	
Tetrachloroethene	243	μg/L	SW8260D	5.18	20.0	200.0	0	121	58 - 149	238	1.95	35	
Toluene	226	μg/L	SW8260D	2.85	20.0	200.0	0	113	69 - 129	219	2.92	35	
trans-1,2-Dichloroethene	246	μg/L	SW8260D	2.82	20.0	200.0	0	123	70 - 134	236	4.11	35	
trans-1,3-Dichloropropene	207	μg/L	SW8260D	7.72	20.0	200.0	0	104	63 - 132	203	1.80	35	
Trichloroethene	233	μg/L	SW8260D	1.80	20.0	200.0	0	116	72 - 136	224	3.94	35	
Trichlorofluoromethane	227	μg/L	SW8260D	3.75	20.0	200.0	0	114	59 - 152	217	4.55	35	

Report Date: 1/27/2021 Page 36 of 37

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Applied Geotechnical

Lab Set ID: 2101579

Project: Forseys Cleaners Additional MW's / 1210017

Contact: Joe DeGooyer

Dept: MSVOA

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 2101580-002AMSD Test Code: 8260D-W	Date Analyzed:	01/26/20	21 905h										
Vinyl chloride	220	μg/L	SW8260D	2.05	10.0	200.0	0	110	43 - 152	205	6.92	35	
Surr: 1,2-Dichloroethane-d4 498		$\mu g/L$	SW8260D			500.0		99.7	80 - 136				
Surr: 4-Bromofluorobenzene 493		$\mu g/L$	SW8260D			500.0		98.6	85 - 121				
Surr: Dibromofluoromethane 518		$\mu g/L$	SW8260D			500.0		104	78 - 132				
Surr: Toluene-d8	507	$\mu g/L$	SW8260D			500.0		101	81 - 123				
Lab Sample ID: 2101641-001AMSD Test Code: 8260D-W	Date Analyzed:	01/27/20	21 847h										
Tetrachloroethene	2,470	μg/L	SW8260D	51.8	200	2,000	0	124	58 - 149	2510	1.65	35	
Surr: 1,2-Dichloroethane-d4	4,720	μg/L	SW8260D			5,000		94.5	80 - 136				
Surr: 4-Bromofluorobenzene	4,840	μg/L	SW8260D			5,000		96.9	85 - 121				
Surr: Dibromofluoromethane	4,980	$\mu g/L$	SW8260D			5,000		99.6	78 - 132				
Surr: Toluene-d8	4,980	$\mu g/L$	SW8260D			5,000		99.5	81 - 123				

Report Date: 1/27/2021 Page 37 of 37

2 Day Rush

American West Analytical Laboratories

REVISED: 1-25-21

Rpt Emailed:

UL

Added Trip Blank - DB

WORK ORDER Summary

APP100

Work Order: 2101579

Page 1 of 1

Client:

Applied Geotechnical

Client ID: Project:

Forseys Cleaners Additional MW's / 1210017

QC Level: II+

Contact:

Joe DeGooyer

WO Type: Standard

Due Date: 1/27/2021

2 Day Rush (after 4:00 n m): OC 2± 1 25 20 Added Trin Blank for analysis:

DB

							<u>P</u>					
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage						
2101579-001A	MW-6	1/22/2021 1220h	1/22/2021 1700h	8260D-W	Aqueous	VOCFridge	3					
			Test Group: 8260D-W-AWAL; # of Analytes: 53 / # of Surr: 4									
2101579-002A	MW-6 - Duplicate	1/22/2021 1230h	1/22/2021 1700h	8260D-W	Aqueous	VOCFridge	3					
				Test Group: 8260D-W-AWAL; # of Analytes: 53 / # of Surr: 4								
2101579-003A	MW-7	1/22/2021 1340h	1/22/2021 1700h	8260D-W	Aqueous	VOCFridge	3					
				Test Group: 8260D-W-AWAL; # of Analytes: 53 / # of Surr: 4								
2101579-004A	MW-8	1/22/2021 1410h	1/22/2021 1700h	8260D-W	Aqueous	VOCFridge	3					
			Test Group: 8260D-W-AWAL; # of Analytes: 53 / # of Surr: 4									
2101579-005A	MW-9	1/22/2021 1505h	1/22/2021 1700h	8260D-W	Aqueous	VOCFridge	3					
				Test Group: 8260D-W-AWAL; # of Analytes: 53 / # of Surr: 4								
2101579-006A	MW-10	1/22/2021 1550h	1/22/2021 1700h	8260D-W	Aqueous	VOCFridge	3					
				Test Group: 8260L	D-W-AWAL; # of Analytes: 53 / #	of Surr: 4						
2101579-007A	Trip Blank	1/22/2021 1700h	1/22/2021 1700h	8260D-W	Aqueous	VOCFridge	3					
				Test Group: 8260L	D-W-AWAL; # of Analytes: 53 / #	of Surr: 4						

Printed: 1/25/2021 LABORATORY CHECK: %M 🔲 RT 🗍 CN [TAT [QC 🗌 LUO 🗀 HOK HOK HOK COC Emailed

Address:

Contact:

Phone #:

E-mail:

Project #:

PO #:

City, State, Zip:

Project Name:

Sampler Name:

Signature

Signature

Relinquished by

Relinquished by: Signature

Print Name:

TA7 - - 1

Date

Sampled

1/22/21

222

22/21

1/22/1

1 222

122/21

) | W | W

Time: 17:00

Time:

Ameri	ican we	st
A nalytical	Labora	tories
3440 S. 700 W. S	alt Lake City, UT	84119
Phone # (801) 263-8686	Toll Free # (88	38) 263-8686

Fax # (801) 263-8687 Email awal@awal-labs.com

www.awal-labs.com

2407P

HATU

DeGooner

e agecine com

Dupliate

orsens Gleaners

1210017

Sample Site ID:

MW-6

Mw-6

mw-2

MW-8

MW-9

MW-10

801-566-6399

CHAIN OF CUSTODY All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation. Page QC Level: Turn Around Time: Due Dater Rush sets received after 4:00 pm are 20 1 2 2+ 3 3+ considered received on the next business day. 4 5 Stnd echnical Engineering Consultant ☐ Report down to the MDL Unless other arrangements have been ☐ Include EDD: made, signed reports will be emailed by ☐ Lab Filter for: 5:00 pm on the day they are due. ☐ Field Filtered For: Laboratory Use Only For Compliance With: □ NELAP COC Tape Was: □ RCRA 1 Present on Outer Package □ CWA □ SDWA □ ELAP / A2LA 2 Unbroken on Outer Page □ NLLAP □ Non-Compliance ☐ Other: Containers Sample Matrix Known Hazards Unbroken on Sample Time NA jo# Sample Comments Sampled Samples Were: 12,20 1 Shipped 3 12:30 W 1:40 Temperature 3 2:10 10 3:05 3:50 3 Checked at bench 6 Received Within and COC Record Match? Special Instructions: Time:

Time:

Received by:

rint Name:

Received by:

Pri<u>nt Name</u>:

Signature

Signature